BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Babinchak WM, Surewicz WK. Liquid-Liquid Phase Separation and Its Mechanistic Role in Pathological Protein Aggregation. J Mol Biol 2020;432:1910-25. [PMID: 32169484 DOI: 10.1016/j.jmb.2020.03.004] [Cited by in Crossref: 37] [Cited by in F6Publishing: 68] [Article Influence: 18.5] [Reference Citation Analysis]
Number Citing Articles
1 Xing Y, Andrikopoulos N, Zhang Z, Sun Y, Ke PC, Ding F. Modulating Nanodroplet Formation En Route to Fibrillization of Amyloid Peptides with Designed Flanking Sequences. Biomacromolecules 2022. [PMID: 36137260 DOI: 10.1021/acs.biomac.2c00642] [Reference Citation Analysis]
2 Islam M, Shen F, Regmi D, Petersen K, Karim MRU, Du D. Tau liquid-liquid phase separation: At the crossroads of tau physiology and tauopathy. J Cell Physiol 2022. [PMID: 35980344 DOI: 10.1002/jcp.30853] [Reference Citation Analysis]
3 Qian D, Michaels TCT, Knowles TPJ. Analytical Solution to the Flory-Huggins Model. J Phys Chem Lett 2022;:7853-60. [PMID: 35977086 DOI: 10.1021/acs.jpclett.2c01986] [Reference Citation Analysis]
4 Miyagi T, Yamazaki R, Ueda K, Narumi S, Hayamizu Y, Uji-i H, Kuroda M, Kanekura K. The Patterning and Proportion of Charged Residues in the Arginine-Rich Mixed-Charge Domain Determine the Membrane-Less Organelle Targeted by the Protein. IJMS 2022;23:7658. [DOI: 10.3390/ijms23147658] [Reference Citation Analysis]
5 Mohanty P, Kapoor U, Sundaravadivelu Devarajan D, Phan TM, Rizuan A, Mittal J. Principles Governing the Phase Separation of Multidomain Proteins. Biochemistry 2022. [PMID: 35802394 DOI: 10.1021/acs.biochem.2c00210] [Reference Citation Analysis]
6 Meisl G, Knowles TPJ, Klenerman D. Mechanistic Models of Protein Aggregation Across Length-Scales and Time-Scales: From the Test Tube to Neurodegenerative Disease. Front Neurosci 2022;16:909861. [DOI: 10.3389/fnins.2022.909861] [Reference Citation Analysis]
7 Bhagavatula H, Sarkar A, Santra B, Das A. Scan-Find-Scan-Model: Discrete Site-Targeted Suppressor Design Strategy for Amyloid-β. ACS Chem Neurosci 2022. [PMID: 35767676 DOI: 10.1021/acschemneuro.2c00272] [Reference Citation Analysis]
8 Schaefer A, Naser D, Siebeneichler B, Tarasca MV, Meiering EM. Methodological advances and strategies for high resolution structure determination of cellular protein aggregates. J Biol Chem 2022;:102197. [PMID: 35760099 DOI: 10.1016/j.jbc.2022.102197] [Reference Citation Analysis]
9 Zhang Z, Klionsky DJ. CCT2, a newly identified aggrephagy receptor in mammals, specifically mediates the autophagic clearance of solid protein aggregates. Autophagy 2022;:1-3. [PMID: 35699934 DOI: 10.1080/15548627.2022.2083305] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Barracchia CG, Parolini F, Volpe A, Gori D, Munari F, Capaldi S, D'Onofrio M, Assfalg M. Camouflaged Fluorescent Silica Nanoparticles Target Aggregates and Condensates of the Amyloidogenic Protein Tau. Bioconjug Chem 2022. [PMID: 35686491 DOI: 10.1021/acs.bioconjchem.2c00168] [Reference Citation Analysis]
11 Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022;10:886382. [DOI: 10.3389/fchem.2022.886382] [Reference Citation Analysis]
12 Jiménez JS. Macromolecular structures and proteins interacting with the microtubule associated tau protein. Neuroscience 2022. [DOI: 10.1016/j.neuroscience.2022.05.023] [Reference Citation Analysis]
13 Davis RB, Moosa MM, Banerjee PR. Ectopic biomolecular phase transitions: fusion proteins in cancer pathologies. Trends Cell Biol 2022:S0962-8924(22)00077-0. [PMID: 35484036 DOI: 10.1016/j.tcb.2022.03.005] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Antifeeva IA, Fonin AV, Fefilova AS, Stepanenko OV, Povarova OI, Silonov SA, Kuznetsova IM, Uversky VN, Turoverov KK. Liquid-liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cell Mol Life Sci 2022;79:251. [PMID: 35445278 DOI: 10.1007/s00018-022-04276-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Laghmach R, Alshareedah I, Pham M, Raju M, Banerjee PR, Potoyan DA. RNA chain length and stoichiometry govern surface tension and stability of protein-RNA condensates. iScience 2022;25:104105. [PMID: 35378855 DOI: 10.1016/j.isci.2022.104105] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Ma X, Lu C, Chen Y, Li S, Ma N, Tao X, Li Y, Wang J, Zhou M, Yan YB, Li P, Heydari K, Deng H, Zhang M, Yi C, Ge L. CCT2 is an aggrephagy receptor for clearance of solid protein aggregates. Cell 2022;185:1325-1345.e22. [PMID: 35366418 DOI: 10.1016/j.cell.2022.03.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
17 Garaizar A, Espinosa JR, Joseph JA, Collepardo-Guevara R. Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates. Sci Rep 2022;12:4390. [PMID: 35293386 DOI: 10.1038/s41598-022-08130-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
18 Parolini F, Tira R, Barracchia CG, Munari F, Capaldi S, D'Onofrio M, Assfalg M. Ubiquitination of Alzheimer's-related tau protein affects liquid-liquid phase separation in a site- and cofactor-dependent manner. Int J Biol Macromol 2022;201:173-81. [PMID: 35016968 DOI: 10.1016/j.ijbiomac.2021.12.191] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Wnek GE, Costa ACS, Kozawa SK. Bio-Mimicking, Electrical Excitability Phenomena Associated With Synthetic Macromolecular Systems: A Brief Review With Connections to the Cytoskeleton and Membraneless Organelles. Front Mol Neurosci 2022;15:830892. [DOI: 10.3389/fnmol.2022.830892] [Reference Citation Analysis]
20 Agarwal A, Arora L, Rai SK, Avni A, Mukhopadhyay S. Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion. Nat Commun 2022;13:1154. [PMID: 35241680 DOI: 10.1038/s41467-022-28797-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
21 Imamura Y, Hiyama A, Miyazaki H, Yamanaka T, Nukina N. Amyloids facilitate DNA transfection in vivo. Neuroscience Research 2022. [DOI: 10.1016/j.neures.2022.03.003] [Reference Citation Analysis]
22 Lye YS, Chen YR. TAR DNA-binding protein 43 oligomers in physiology and pathology. IUBMB Life 2022. [PMID: 35229461 DOI: 10.1002/iub.2603] [Reference Citation Analysis]
23 Abyzov A, Blackledge M, Zweckstetter M. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Chem Rev 2022. [PMID: 35179885 DOI: 10.1021/acs.chemrev.1c00774] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
24 Boyko S, Surewicz WK. Tau liquid-liquid phase separation in neurodegenerative diseases. Trends Cell Biol 2022:S0962-8924(22)00026-5. [PMID: 35181198 DOI: 10.1016/j.tcb.2022.01.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Huynh E, Olinger A, Woolley D, Kohli RK, Choczynski JM, Davies JF, Lin K, Marr LC, Davis RD. Evidence for a semisolid phase state of aerosols and droplets relevant to the airborne and surface survival of pathogens. Proc Natl Acad Sci U S A 2022;119:e2109750119. [PMID: 35064080 DOI: 10.1073/pnas.2109750119] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
26 Liu J, Zhang C, Liu Y, Wu X, Zhang T, Zhao F, Chen L, Jin X, He J, Yin D. The dual function of impurity in protein crystallization. CrystEngComm 2022;24:647-56. [DOI: 10.1039/d1ce01535d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Katina N, Mikhaylina A, Ilina N, Eliseeva I, Balobanov V. Near-Wall Aggregation of Amyloidogenic Aβ 1-40 Peptide: Direct Observation by the FRET. Molecules 2021;26:7590. [PMID: 34946672 DOI: 10.3390/molecules26247590] [Reference Citation Analysis]
28 Limorenko G, Lashuel HA. Revisiting the grammar of Tau aggregation and pathology formation: how new insights from brain pathology are shaping how we study and target Tauopathies. Chem Soc Rev 2021. [PMID: 34889934 DOI: 10.1039/d1cs00127b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
29 Gadhe L, Sakunthala A, Mukherjee S, Gahlot N, Bera R, Sawner AS, Kadu P, Maji SK. Intermediates of α-synuclein aggregation: Implications in Parkinson's disease pathogenesis. Biophys Chem 2021;281:106736. [PMID: 34923391 DOI: 10.1016/j.bpc.2021.106736] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
30 Guillen-Chable F, Bayona A, Rodríguez-Zapata LC, Castano E. Phase Separation of Intrinsically Disordered Nucleolar Proteins Relate to Localization and Function. Int J Mol Sci 2021;22:13095. [PMID: 34884901 DOI: 10.3390/ijms222313095] [Reference Citation Analysis]
31 Kitahara R, Yamazaki R, Ide F, Li S, Shiramasa Y, Sasahara N, Yoshizawa T. Pressure-Jump Kinetics of Liquid-Liquid Phase Separation: Comparison of Two Different Condensed Phases of the RNA-Binding Protein, Fused in Sarcoma. J Am Chem Soc 2021;143:19697-702. [PMID: 34787417 DOI: 10.1021/jacs.1c07571] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
32 Agarwal A, Mukhopadhyay S. Prion Protein Biology Through the Lens of Liquid-Liquid Phase Separation. J Mol Biol 2021;:167368. [PMID: 34808226 DOI: 10.1016/j.jmb.2021.167368] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
33 Dec R, Puławski W, Dzwolak W. Selective and stoichiometric incorporation of ATP by self-assembling amyloid fibrils. J Mater Chem B 2021;9:8626-30. [PMID: 34622264 DOI: 10.1039/d1tb01976g] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
34 Hansen J, Uthayakumar R, Pedersen JS, Egelhaaf SU, Platten F. Interactions in protein solutions close to liquid-liquid phase separation: ethanol reduces attractions via changes of the dielectric solution properties. Phys Chem Chem Phys 2021;23:22384-94. [PMID: 34608908 DOI: 10.1039/d1cp03210k] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Argueti-Ostrovsky S, Alfahel L, Kahn J, Israelson A. All Roads Lead to Rome: Different Molecular Players Converge to Common Toxic Pathways in Neurodegeneration. Cells 2021;10:2438. [PMID: 34572087 DOI: 10.3390/cells10092438] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
36 James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021. [PMID: 34493042 DOI: 10.1021/acs.chemrev.1c00279] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
37 Powers ET, Gierasch LM. The Proteome Folding Problem and Cellular Proteostasis. J Mol Biol 2021;:167197. [PMID: 34391802 DOI: 10.1016/j.jmb.2021.167197] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
38 Polido SA, Kamps J, Tatzelt J. Biological Functions of the Intrinsically Disordered N-Terminal Domain of the Prion Protein: A Possible Role of Liquid-Liquid Phase Separation. Biomolecules 2021;11:1201. [PMID: 34439867 DOI: 10.3390/biom11081201] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Johari M, Sarparanta J, Vihola A, Jonson PH, Savarese M, Jokela M, Torella A, Piluso G, Said E, Vella N, Cauchi M, Magot A, Magri F, Mauri E, Kornblum C, Reimann J, Stojkovic T, Romero NB, Luque H, Huovinen S, Lahermo P, Donner K, Comi GP, Nigro V, Hackman P, Udd B. Missense mutations in small muscle protein X-linked (SMPX) cause distal myopathy with protein inclusions. Acta Neuropathol 2021;142:375-93. [PMID: 33974137 DOI: 10.1007/s00401-021-02319-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
40 Mousavi SM, Gompper G, Winkler RG. Active bath-induced localization and collapse of passive semiflexible polymers. J Chem Phys 2021;155:044902. [PMID: 34340385 DOI: 10.1063/5.0058150] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Shamilov R, Robinson VL, Aneskievich BJ. Seeing Keratinocyte Proteins through the Looking Glass of Intrinsic Disorder. Int J Mol Sci 2021;22:7912. [PMID: 34360678 DOI: 10.3390/ijms22157912] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
42 Mann JR, Donnelly CJ. RNA modulates physiological and neuropathological protein phase transitions. Neuron 2021;109:2663-81. [PMID: 34297914 DOI: 10.1016/j.neuron.2021.06.023] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
43 Cao Y, Adamcik J, Diener M, Kumita JR, Mezzenga R. Different Folding States from the Same Protein Sequence Determine Reversible vs Irreversible Amyloid Fate. J Am Chem Soc 2021;143:11473-81. [PMID: 34286587 DOI: 10.1021/jacs.1c03392] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
44 Ma J, Cheng X, Xu Z, Zhang Y, Valle J, Fan S, Zuo X, Lasa I, Fang X. Structural mechanism for modulation of functional amyloid and biofilm formation by Staphylococcal Bap protein switch. EMBO J 2021;40:e107500. [PMID: 34046916 DOI: 10.15252/embj.2020107500] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
45 Gowayed OY, Moosa T, Moratos AM, Hua T, Arnold S, Garetz BA. Dynamic Light Scattering Study of a Laser-Induced Phase-Separated Droplet of Aqueous Glycine. J Phys Chem B 2021;125:7828-39. [PMID: 34259002 DOI: 10.1021/acs.jpcb.1c02620] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
46 Vweza AO, Song CG, Chong KT. Liquid-Liquid Phase Separation in the Presence of Macromolecular Crowding and State-dependent Kinetics. Int J Mol Sci 2021;22:6675. [PMID: 34206440 DOI: 10.3390/ijms22136675] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Kamps J, Lin YH, Oliva R, Bader V, Winter R, Winklhofer KF, Tatzelt J. The N-terminal domain of the prion protein is required and sufficient for liquid-liquid phase separation: A crucial role of the Aβ-binding domain. J Biol Chem 2021;297:100860. [PMID: 34102212 DOI: 10.1016/j.jbc.2021.100860] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Bai J, Liu D, Wang R. Self-assembly of Amphiphilic Diblock Copolymers Induced by Liquid-Liquid Phase Separation. Chin J Polym Sci 2021;39:1217-24. [DOI: 10.1007/s10118-021-2563-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Ashami K, Falk AS, Hurd C, Garg S, Cervantes SA, Rawat A, Siemer AB. Droplet and fibril formation of the functional amyloid Orb2. J Biol Chem 2021;297:100804. [PMID: 34044018 DOI: 10.1016/j.jbc.2021.100804] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
50 Dannenhoffer-Lafage T, Best RB. A Data-Driven Hydrophobicity Scale for Predicting Liquid-Liquid Phase Separation of Proteins. J Phys Chem B 2021;125:4046-56. [PMID: 33876938 DOI: 10.1021/acs.jpcb.0c11479] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
51 Rapino F, Zhou Z, Roncero Sanchez AM, Joiret M, Seca C, El Hachem N, Valenti G, Latini S, Shostak K, Geris L, Li P, Huang G, Mazzucchelli G, Baiwir D, Desmet CJ, Chariot A, Georges M, Close P. Wobble tRNA modification and hydrophilic amino acid patterns dictate protein fate. Nat Commun 2021;12:2170. [PMID: 33859181 DOI: 10.1038/s41467-021-22254-5] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
52 Murakami K, Kajimoto S, Shibata D, Kuroi K, Fujii F, Nakabayashi T. Observation of liquid-liquid phase separation of ataxin-3 and quantitative evaluation of its concentration in a single droplet using Raman microscopy. Chem Sci 2021;12:7411-8. [PMID: 34163831 DOI: 10.1039/d0sc06095j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
53 Matiiv AB, Trubitsina NP, Matveenko AG, Barbitoff YA, Zhouravleva GA, Bondarev SA. Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. Biochemistry (Mosc) 2020;85:1011-34. [PMID: 33050849 DOI: 10.1134/S0006297920090035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
54 Jeon P, Lee JA. Dr. Jekyll and Mr. Hyde? Physiology and Pathology of Neuronal Stress Granules. Front Cell Dev Biol 2021;9:609698. [PMID: 33718353 DOI: 10.3389/fcell.2021.609698] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
55 Fennema Galparsoro D, Zhou X, Jaaloul A, Piccirilli F, Vetri V, Foderà V. Conformational Transitions upon Maturation Rule Surface and pH-Responsiveness of α-Lactalbumin Microparticulates. ACS Appl Bio Mater 2021;4:1876-87. [PMID: 35014457 DOI: 10.1021/acsabm.0c01541] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
56 Korotkevich AA, Bakker HJ. Confined Water Molecules in Binary Mixtures of Water and 2,6-Lutidine Near Lower Solution Critical Temperature. J Phys Chem B 2021;125:287-96. [PMID: 33370126 DOI: 10.1021/acs.jpcb.0c09363] [Reference Citation Analysis]
57 Gerson JE, Linton H, Xing J, Sutter AB, Kakos FS, Ryou J, Liggans N, Sharkey LM, Safren N, Paulson HL, Ivanova MI. Shared and divergent phase separation and aggregation properties of brain-expressed ubiquilins. Sci Rep 2021;11:287. [PMID: 33431932 DOI: 10.1038/s41598-020-78775-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
58 Zeigler TM, Chung MC, Narayan OP, Guan J. Protein phase separation: physical models and phase-separation- mediated cancer signaling. Advances in Physics: X 2021;6:1936638. [DOI: 10.1080/23746149.2021.1936638] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Laflamme G, Mekhail K. Biomolecular condensates as arbiters of biochemical reactions inside the nucleus. Commun Biol 2020;3:773. [PMID: 33319830 DOI: 10.1038/s42003-020-01517-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
60 Boyko S, Surewicz K, Surewicz WK. Regulatory mechanisms of tau protein fibrillation under the conditions of liquid-liquid phase separation. Proc Natl Acad Sci U S A 2020;117:31882-90. [PMID: 33262278 DOI: 10.1073/pnas.2012460117] [Cited by in Crossref: 12] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
61 Harley J, Patani R. Stress-Specific Spatiotemporal Responses of RNA-Binding Proteins in Human Stem-Cell-Derived Motor Neurons. Int J Mol Sci 2020;21:E8346. [PMID: 33172210 DOI: 10.3390/ijms21218346] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
62 Pessina F, Gioia U, Brandi O, Farina S, Ceccon M, Francia S, d'Adda di Fagagna F. DNA Damage Triggers a New Phase in Neurodegeneration. Trends Genet 2021;37:337-54. [PMID: 33020022 DOI: 10.1016/j.tig.2020.09.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
63 Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. Adv Mater 2020;32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
64 Hua T, Valentín-valentín C, Gowayed O, Lee S, Garetz BA, Hartman RL. Microfluidic Laser-Induced Nucleation of Supersaturated Aqueous Glycine Solutions. Crystal Growth & Design 2020;20:6502-9. [DOI: 10.1021/acs.cgd.0c00669] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
65 Winkler RG, Gompper G. The physics of active polymers and filaments. J Chem Phys 2020;153:040901. [DOI: 10.1063/5.0011466] [Cited by in Crossref: 13] [Cited by in F6Publishing: 33] [Article Influence: 6.5] [Reference Citation Analysis]
66 Bajc Česnik A, Motaln H, Rogelj B. The Impact of ALS-Associated Genes hnRNPA1, MATR3, VCP and UBQLN2 on the Severity of TDP-43 Aggregation. Cells 2020;9:E1791. [PMID: 32731393 DOI: 10.3390/cells9081791] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
67 Garcia AM, Giorgiutti C, El Khoury Y, Bauer V, Spiegelhalter C, Leize-Wagner E, Hellwig P, Potier N, Torbeev V. Aggregation and Amyloidogenicity of the Nuclear Coactivator Binding Domain of CREB-Binding Protein. Chemistry 2020;26:9889-99. [PMID: 32364648 DOI: 10.1002/chem.202001847] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
68 Rizvi A, Patel U, Ianiro A, Hurst PJ, Merham JG, Patterson JP. Nonionic Block Copolymer Coacervates. Macromolecules 2020;53:6078-86. [DOI: 10.1021/acs.macromol.0c00979] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]