BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu Y, Yan W, Tohme S, Chen M, Fu Y, Tian D, Lotze M, Tang D, Tsung A. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll-like receptor 9. J Hepatol. 2015;63:114-121. [PMID: 25681553 DOI: 10.1016/j.jhep.2015.02.009] [Cited by in Crossref: 90] [Cited by in F6Publishing: 95] [Article Influence: 12.9] [Reference Citation Analysis]
Number Citing Articles
1 Huang F, Chen J, Lan R, Wang Z, Chen R, Lin J, Fu L. Hypoxia induced δ-Catenin to enhance mice hepatocellular carcinoma progression via Wnt signaling. Exp Cell Res 2019;374:94-103. [PMID: 30458179 DOI: 10.1016/j.yexcr.2018.11.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
2 Wu MZ, Cheng WC, Chen SF, Nieh S, O'Connor C, Liu CL, Tsai WW, Wu CJ, Martin L, Lin YS, Wu KJ, Lu LF, Izpisua Belmonte JC. miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat Cell Biol 2017;19:1286-96. [PMID: 28920955 DOI: 10.1038/ncb3615] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 9.8] [Reference Citation Analysis]
3 Yang L, Ye F, Zeng L, Li Y, Chai W. Knockdown of HMGB1 Suppresses Hypoxia-Induced Mitochondrial Biogenesis in Pancreatic Cancer Cells. Onco Targets Ther 2020;13:1187-98. [PMID: 32103987 DOI: 10.2147/OTT.S234530] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Lotfi R, Kaltenmeier C, Lotze MT, Bergmann C. Until Death Do Us Part: Necrosis and Oxidation Promote the Tumor Microenvironment. Transfus Med Hemother 2016;43:120-32. [PMID: 27226794 DOI: 10.1159/000444941] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
5 Lu RO, Ho WS. Mitochondrial Dysfunction, Macrophage, and Microglia in Brain Cancer. Front Cell Dev Biol 2020;8:620788. [PMID: 33520994 DOI: 10.3389/fcell.2020.620788] [Reference Citation Analysis]
6 Martínez-campos C, Burguete-garcía AI, Madrid-marina V. Role of TLR9 in Oncogenic Virus-Produced Cancer. Viral Immunology 2017;30:98-105. [DOI: 10.1089/vim.2016.0103] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
7 Xu D, Tian Y, Xia Q, Ke B. The cGAS-STING Pathway: Novel Perspectives in Liver Diseases. Front Immunol 2021;12:682736. [PMID: 33995425 DOI: 10.3389/fimmu.2021.682736] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H, Tsung A. Neutrophil Extracellular Traps Promote the Development and Progression of Liver Metastases after Surgical Stress. Cancer Res. 2016;76:1367-1380. [PMID: 26759232 DOI: 10.1158/0008-5472.can-15-1591] [Cited by in Crossref: 231] [Cited by in F6Publishing: 160] [Article Influence: 38.5] [Reference Citation Analysis]
9 Angrini M, Varthaman A, Cremer I. Toll-Like Receptors (TLRs) in the Tumor Microenvironment (TME): A Dragon-Like Weapon in a Non-fantasy Game of Thrones. In: Birbrair A, editor. Tumor Microenvironment. Cham: Springer International Publishing; 2020. pp. 145-73. [DOI: 10.1007/978-3-030-44518-8_9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Zhang X, Wu X, Hu Q, Wu J, Wang G, Hong Z, Ren J; Lab for Trauma and Surgical Infections. Mitochondrial DNA in liver inflammation and oxidative stress. Life Sci 2019;236:116464. [PMID: 31078546 DOI: 10.1016/j.lfs.2019.05.020] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 8.7] [Reference Citation Analysis]
11 Chen J, Chen J, Huang J, Li Z, Gong Y, Zou B, Liu X, Ding L, Li P, Zhu Z, Zhang B, Guo H, Cai C, Li J. HIF-2α upregulation mediated by hypoxia promotes NAFLD-HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway. Aging (Albany NY) 2019;11:10839-60. [PMID: 31796646 DOI: 10.18632/aging.102488] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
12 Yao W, Wang J, Zhu L, Jia X, Xu L, Tian X, Hu S, Wu S, Wei L. Epigenetic Regulator KDM4D Restricts Tumorigenesis via Modulating SYVN1/HMGB1 Ubiquitination Axis in Esophageal Squamous Cell Carcinoma. Front Oncol 2021;11:761346. [PMID: 34820329 DOI: 10.3389/fonc.2021.761346] [Reference Citation Analysis]
13 Han Z, Yang, Trivett A, Oppenheim JJ. Therapeutic vaccine to cure large mouse hepatocellular carcinomas. Oncotarget 2017;8:52061-71. [PMID: 28881713 DOI: 10.18632/oncotarget.19367] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
14 Tohme S, Yazdani HO, Liu Y, Loughran P, van der Windt DJ, Huang H, Simmons RL, Shiva S, Tai S, Tsung A. Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction. Hepatology 2017;66:182-97. [PMID: 28370295 DOI: 10.1002/hep.29184] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 9.4] [Reference Citation Analysis]
15 Xu Y, Shen J, Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy 2020;16:3-17. [PMID: 30951392 DOI: 10.1080/15548627.2019.1603547] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 20.7] [Reference Citation Analysis]
16 Rapoport BL, Steel HC, Theron AJ, Heyman L, Smit T, Ramdas Y, Anderson R. High Mobility Group Box 1 in Human Cancer. Cells 2020;9:E1664. [PMID: 32664328 DOI: 10.3390/cells9071664] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
17 Jang GY, Lee JW, Kim YS, Lee SE, Han HD, Hong KJ, Kang TH, Park YM. Interactions between tumor-derived proteins and Toll-like receptors. Exp Mol Med 2020;52:1926-35. [PMID: 33299138 DOI: 10.1038/s12276-020-00540-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
18 Yazdani HO, Huang H, Tsung A. Autophagy: Dual Response in the Development of Hepatocellular Carcinoma. Cells. 2019;8. [PMID: 30695997 DOI: 10.3390/cells8020091] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 9.3] [Reference Citation Analysis]
19 Sekiguchi F, Kawabata A. Role of HMGB1 in Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2020;22:E367. [PMID: 33396481 DOI: 10.3390/ijms22010367] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Wang X, Xiang L, Li H, Chen P, Feng Y, Zhang J, Yang N, Li F, Wang Y, Zhang Q. The role of HMGB1 signaling pathway in the development and progression of hepatocellular carcinoma: a review. Int J Mol Sci. 2015;16:22527-22540. [PMID: 26393575 DOI: 10.3390/ijms160922527] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 5.3] [Reference Citation Analysis]
21 Song IJ, Yang YM, Inokuchi-Shimizu S, Roh YS, Yang L, Seki E. The contribution of toll-like receptor signaling to the development of liver fibrosis and cancer in hepatocyte-specific TAK1-deleted mice. Int J Cancer. 2018;142:81-91. [PMID: 28875549 DOI: 10.1002/ijc.31029] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
22 Fan J, Shi Y, Peng Y. Autophagy and Liver Diseases. Adv Exp Med Biol 2020;1207:497-528. [PMID: 32671772 DOI: 10.1007/978-981-15-4272-5_37] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Ding C, Yu H, Shi C, Shi T, Qin H, Cui Y. MiR-let-7e inhibits invasion and magration and regulates HMGB1 expression in papillary thyroid carcinoma. Biomed Pharmacother 2019;110:528-36. [PMID: 30530288 DOI: 10.1016/j.biopha.2018.11.057] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
24 Thankam FG, Ayoub JG, Ahmed MMR, Siddique A, Sanchez TC, Peralta RA, Pennington TJ, Agrawal DK. Association of hypoxia and mitochondrial damage associated molecular patterns in the pathogenesis of vein graft failure: a pilot study. Transl Res 2021;229:38-52. [PMID: 32861831 DOI: 10.1016/j.trsl.2020.08.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
25 Singleton DC, Macann A, Wilson WR. Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol 2021. [PMID: 34326502 DOI: 10.1038/s41571-021-00539-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Parroche P, Roblot G, Le Calvez-Kelm F, Tout I, Marotel M, Malfroy M, Durand G, McKay J, Ainouze M, Carreira C, Allatif O, Traverse-Glehen A, Mendiola M, Pozo-Kreilinger JJ, Caux C, Tommasino M, Goutagny N, Hasan UA. TLR9 re-expression in cancer cells extends the S-phase and stabilizes p16(INK4a) protein expression. Oncogenesis 2016;5:e244. [PMID: 27454079 DOI: 10.1038/oncsis.2016.49] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
27 Rodríguez-Nuevo A, Zorzano A. The sensing of mitochondrial DAMPs by non-immune cells. Cell Stress 2019;3:195-207. [PMID: 31225514 DOI: 10.15698/cst2019.06.190] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
28 West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 2017;17:363-75. [PMID: 28393922 DOI: 10.1038/nri.2017.21] [Cited by in Crossref: 327] [Cited by in F6Publishing: 304] [Article Influence: 65.4] [Reference Citation Analysis]
29 Chuang MH, Chang JT, Hsu LJ, Jan MS, Lu FJ. Antitumor Activity of the Chinese Medicine JC-001 Is Mediated by Immunomodulation in a Murine Model of Hepatocellular Carcinoma. Integr Cancer Ther 2017;16:516-25. [PMID: 27698264 DOI: 10.1177/1534735416664173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
30 Liu Z, Dou C, Yao B, Xu M, Ding L, Wang Y, Jia Y, Li Q, Zhang H, Tu K, Song T, Liu Q. Methylation-mediated repression of microRNA-129-2 suppresses cell aggressiveness by inhibiting high mobility group box 1 in human hepatocellular carcinoma. Oncotarget 2016;7:36909-23. [PMID: 27191994 DOI: 10.18632/oncotarget.9377] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]
31 Wang H, Zhang Y, Wang Q, Wei X, Wang H, Gu K. The regulatory mechanism of neutrophil extracellular traps in cancer biological behavior. Cell Biosci 2021;11:193. [PMID: 34758877 DOI: 10.1186/s13578-021-00708-z] [Reference Citation Analysis]
32 Kim JE, Park H, Kim TH, Kang TC. LONP1 Regulates Mitochondrial Accumulations of HMGB1 and Caspase-3 in CA1 and PV Neurons Following Status Epilepticus. Int J Mol Sci 2021;22:2275. [PMID: 33668863 DOI: 10.3390/ijms22052275] [Reference Citation Analysis]
33 Shalapour S, Karin M. Pas de Deux: Control of Anti-tumor Immunity by Cancer-Associated Inflammation. Immunity. 2019;51:15-26. [PMID: 31315033 DOI: 10.1016/j.immuni.2019.06.021] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 19.0] [Reference Citation Analysis]
34 Yu LX, Ling Y, Wang HY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol 2018;2:6. [PMID: 29872724 DOI: 10.1038/s41698-018-0048-z] [Cited by in Crossref: 75] [Cited by in F6Publishing: 82] [Article Influence: 18.8] [Reference Citation Analysis]
35 Lopes JAG, Borges-Canha M, Pimentel-Nunes P. Innate immunity and hepatocarcinoma: Can toll-like receptors open the door to oncogenesis? World J Hepatol 2016; 8(3): 162-182 [PMID: 26839640 DOI: 10.4254/wjh.v8.i3.162] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
36 Hernandez C, Huebener P, Schwabe RF. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene 2016;35:5931-41. [PMID: 27086930 DOI: 10.1038/onc.2016.104] [Cited by in Crossref: 166] [Cited by in F6Publishing: 162] [Article Influence: 27.7] [Reference Citation Analysis]
37 Chen J, Chen J, Fu H, Li Y, Wang L, Luo S, Lu H. Hypoxia exacerbates nonalcoholic fatty liver disease via the HIF-2α/PPARα pathway. American Journal of Physiology-Endocrinology and Metabolism 2019;317:E710-22. [DOI: 10.1152/ajpendo.00052.2019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
38 Li H, Tong L, Tao H, Liu Z. Genome-wide analysis of the hypoxia-related DNA methylation-driven genes in lung adenocarcinoma progression. Biosci Rep 2020;40:BSR20194200. [PMID: 32031203 DOI: 10.1042/BSR20194200] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
39 Suresh MV, Thomas B, Dolgachev VA, Sherman MA, Goldberg R, Johnson M, Chowdhury A, Machado-Aranda D, Raghavendran K. Toll-Like Receptor-9 (TLR9) is Requisite for Acute Inflammatory Response and Injury Following Lung Contusion. Shock 2016;46:412-9. [PMID: 26939039 DOI: 10.1097/SHK.0000000000000601] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
40 Pacini L, Ceraolo MG, Venuti A, Melita G, Hasan UA, Accardi R, Tommasino M. UV Radiation Activates Toll-Like Receptor 9 Expression in Primary Human Keratinocytes, an Event Inhibited by Human Papillomavirus 38 E6 and E7 Oncoproteins. J Virol 2017;91:e01123-17. [PMID: 28724760 DOI: 10.1128/JVI.01123-17] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
41 Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment. Mediators Inflamm 2020;2020:7527953. [PMID: 32724296 DOI: 10.1155/2020/7527953] [Cited by in Crossref: 44] [Cited by in F6Publishing: 50] [Article Influence: 22.0] [Reference Citation Analysis]
42 Li C, Fu Q, Cai J, Mei H, Shangguan W. Effects of propofol on the proliferation and migration of liver cancer cells. Exp Ther Med 2021;22:733. [PMID: 34055050 DOI: 10.3892/etm.2021.10165] [Reference Citation Analysis]
43 Lei X, Hu X, Zhang T, Zhang J, Wu C, Hong W, Jiang Y, Wang Q, Xie Y, Zhao Y, Zhou J, Jin F, Yu W, Guo B, Bai H, Zhang Q. HMGB1 release promotes paclitaxel resistance in castration-resistant prostate cancer cells via activating c-Myc expression. Cell Signal 2020;72:109631. [PMID: 32275943 DOI: 10.1016/j.cellsig.2020.109631] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
44 Tripathi A, Shrinet K, Kumar A. HMGB1 protein as a novel target for cancer. Toxicol Rep 2019;6:253-61. [PMID: 30911468 DOI: 10.1016/j.toxrep.2019.03.002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 39] [Article Influence: 11.3] [Reference Citation Analysis]
45 Zhou B, Yan J, Guo L, Zhang B, Liu S, Yu M, Chen Z, Zhang K, Zhang W, Li X, Xu Y, Xiao Y, Zhou J, Fan J, Hung MC, Li H, Ye Q. Hepatoma cell-intrinsic TLR9 activation induces immune escape through PD-L1 upregulation in hepatocellular carcinoma. Theranostics 2020;10:6530-43. [PMID: 32483468 DOI: 10.7150/thno.44417] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
46 Naqvi I, Gunaratne R, McDade JE, Moreno A, Rempel RE, Rouse DC, Herrera SG, Pisetsky DS, Lee J, White RR, Sullenger BA. Polymer-Mediated Inhibition of Pro-invasive Nucleic Acid DAMPs and Microvesicles Limits Pancreatic Cancer Metastasis. Mol Ther 2018;26:1020-31. [PMID: 29550075 DOI: 10.1016/j.ymthe.2018.02.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
47 Zou H, Wang W, Liu Y, Braddock M, Zheng M, Huang D. Toll-like receptors in hepatocellular carcinoma: potential novel targets for pharmacological intervention. Expert Opinion on Therapeutic Targets 2016;20:1127-35. [DOI: 10.1517/14728222.2016.1168809] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
48 Hu Q, Zhou Q, Wu J, Wu X, Ren J. The Role of Mitochondrial DNA in the Development of Ischemia Reperfusion Injury. Shock 2019;51:52-9. [PMID: 30286034 DOI: 10.1097/SHK.0000000000001190] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
49 Liang S, Li J, Zou Z, Mao M, Ming S, Lin F, Zhang Z, Cao C, Zhou J, Zhang Y, Li J, Wu M. Tetrahedral DNA nanostructures synergize with MnO2 to enhance antitumor immunity via promoting STING activation and M1 polarization. Acta Pharmaceutica Sinica B 2021. [DOI: 10.1016/j.apsb.2021.12.010] [Reference Citation Analysis]
50 Zhu W, Li J, Zhang Y, Zhu Z, Liu H, Lin Y, Hu A, Zhou J, Ren H, Shi X. Inhibition of HMGB1 Suppresses Hepatocellular Carcinoma Progression via HIPK2-Mediated Autophagic Degradation of ZEB1. Front Oncol 2021;11:599124. [PMID: 33747917 DOI: 10.3389/fonc.2021.599124] [Reference Citation Analysis]
51 Zhao F, Liu A, Gong X, Chen H, Wei J, Chen B, Chen S, Yang R, Fan Y, Mao R. Hypoxia-induced RNASEH2A limits activation of cGAS-STING signaling in HCC and predicts poor prognosis. Tumori 2021;:3008916211026019. [PMID: 34165025 DOI: 10.1177/03008916211026019] [Reference Citation Analysis]
52 Wang Z, Yang C, Li L, Jin X, Zhang Z, Zheng H, Pan J, Shi L, Jiang Z, Su K, Li B, Shao X, Qiu F, Yan J, Huang J. Tumor-derived HMGB1 induces CD62Ldim neutrophil polarization and promotes lung metastasis in triple-negative breast cancer. Oncogenesis 2020;9:82. [PMID: 32943604 DOI: 10.1038/s41389-020-00267-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
53 Taneja S, Vetter SW, Leclerc E. Hypoxia and the Receptor for Advanced Glycation End Products (RAGE) Signaling in Cancer. Int J Mol Sci 2021;22:8153. [PMID: 34360919 DOI: 10.3390/ijms22158153] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
54 Boutilier AJ, Elsawa SF. Macrophage Polarization States in the Tumor Microenvironment. Int J Mol Sci 2021;22:6995. [PMID: 34209703 DOI: 10.3390/ijms22136995] [Reference Citation Analysis]
55 Han H, Desert R, Das S, Song Z, Athavale D, Ge X, Nieto N. Danger signals in liver injury and restoration of homeostasis. J Hepatol 2020;73:933-51. [PMID: 32371195 DOI: 10.1016/j.jhep.2020.04.033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
56 Malinovskaya EM, Ershova ES, Okorokova NA, Veiko VP, Konkova MS, Kozhina EA, Savinova EA, Porokhovnik LN, Kutsev SI, Veiko NN, Kostyuk SV. Ribosomal DNA as DAMPs Signal for MCF7 Cancer Cells. Front Oncol 2019;9:445. [PMID: 31205871 DOI: 10.3389/fonc.2019.00445] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
57 Lee H, Lee HJ, Song IH, Bang WS, Heo SH, Gong G, Park IA. CD11c-Positive Dendritic Cells in Triple-negative Breast Cancer. In Vivo 2018;32:1561-9. [PMID: 30348717 DOI: 10.21873/invivo.11415] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
58 Yang YM, Kim SY, Seki E. Inflammation and Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Semin Liver Dis. 2019;39:26-42. [PMID: 30809789 DOI: 10.1055/s-0038-1676806] [Cited by in Crossref: 56] [Cited by in F6Publishing: 60] [Article Influence: 18.7] [Reference Citation Analysis]
59 Bao D, Zhao J, Zhou X, Yang Q, Chen Y, Zhu J, Yuan P, Yang J, Qin T, Wan S, Xing J. Mitochondrial fission-induced mtDNA stress promotes tumor-associated macrophage infiltration and HCC progression. Oncogene 2019;38:5007-20. [PMID: 30894684 DOI: 10.1038/s41388-019-0772-z] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
60 Raza S, Rajak S, Anjum B, Sinha RA. Molecular links between non-alcoholic fatty liver disease and hepatocellular carcinoma. Hepatoma Res 2019;5:42. [PMID: 31867441 DOI: 10.20517/2394-5079.2019.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
61 Jiang S, Chen X. Expression of High-Mobility Group Box 1 Protein (HMGB1) and Toll-Like Receptor 9 (TLR9) in Retinas of Diabetic Rats. Med Sci Monit 2017;23:3115-22. [PMID: 28647749 DOI: 10.12659/msm.902193] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
62 Lan J, Luo H, Wu R, Wang J, Zhou B, Zhang Y, Jiang Y, Xu J. Internalization of HMGB1 (High Mobility Group Box 1) Promotes Angiogenesis in Endothelial Cells. Arterioscler Thromb Vasc Biol 2020;40:2922-40. [PMID: 32998518 DOI: 10.1161/ATVBAHA.120.315151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
63 Jin L, Yu B, Armando I, Han F. Mitochondrial DNA-Mediated Inflammation in Acute Kidney Injury and Chronic Kidney Disease. Oxid Med Cell Longev 2021;2021:9985603. [PMID: 34306320 DOI: 10.1155/2021/9985603] [Reference Citation Analysis]
64 Qiu Y, Yu Y, Qin XM, Jiang T, Tan YF, Ouyang WX, Xiao ZH, Li SJ. CircTLK1 modulates sepsis-induced cardiomyocyte apoptosis via enhancing PARP1/HMGB1 axis-mediated mitochondrial DNA damage by sponging miR-17-5p. J Cell Mol Med 2021;25:8244-60. [PMID: 34410682 DOI: 10.1111/jcmm.16738] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
65 He SJ, Cheng J, Feng X, Yu Y, Tian L, Huang Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 2017;8:64534-50. [PMID: 28969092 DOI: 10.18632/oncotarget.17885] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 11.8] [Reference Citation Analysis]
66 Lee SY, Ju MK, Jeon HM, Jeong EK, Lee YJ, Kim CH, Park HG, Han SI, Kang HS. Regulation of Tumor Progression by Programmed Necrosis. Oxid Med Cell Longev 2018;2018:3537471. [PMID: 29636841 DOI: 10.1155/2018/3537471] [Cited by in Crossref: 49] [Cited by in F6Publishing: 55] [Article Influence: 12.3] [Reference Citation Analysis]
67 Wan W, Cao L, Khanabdali R, Kalionis B, Tai X, Xia S. The Emerging Role of HMGB1 in Neuropathic Pain: A Potential Therapeutic Target for Neuroinflammation. J Immunol Res 2016;2016:6430423. [PMID: 27294160 DOI: 10.1155/2016/6430423] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
68 van der Heide D, Weiskirchen R, Bansal R. Therapeutic Targeting of Hepatic Macrophages for the Treatment of Liver Diseases. Front Immunol 2019;10:2852. [PMID: 31849997 DOI: 10.3389/fimmu.2019.02852] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 13.0] [Reference Citation Analysis]
69 Zhu J, Han S. DARS-AS1 Knockdown Inhibits the Growth of Cervical Cancer Cells via Downregulating HMGB1 via Sponging miR-188-5p. Technol Cancer Res Treat 2020;19:1533033820971669. [PMID: 33176595 DOI: 10.1177/1533033820971669] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
70 Li K, Qu S, Chen X, Wu Q, Shi M. Promising Targets for Cancer Immunotherapy: TLRs, RLRs, and STING-Mediated Innate Immune Pathways. Int J Mol Sci 2017;18:E404. [PMID: 28216575 DOI: 10.3390/ijms18020404] [Cited by in Crossref: 84] [Cited by in F6Publishing: 73] [Article Influence: 16.8] [Reference Citation Analysis]
71 Pilzweger C, Holdenrieder S. Circulating HMGB1 and RAGE as Clinical Biomarkers in Malignant and Autoimmune Diseases. Diagnostics (Basel) 2015;5:219-53. [PMID: 26854151 DOI: 10.3390/diagnostics5020219] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
72 Cai Y, Huang J, Xing H, Li B, Li L, Wang X, Peng D, Chen J. Contribution of FPR and TLR9 to hypoxia-induced chemoresistance of ovarian cancer cells. Onco Targets Ther 2019;12:291-301. [PMID: 30643427 DOI: 10.2147/OTT.S190118] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
73 Bousquet PA, Meltzer S, Sønstevold L, Esbensen Y, Dueland S, Flatmark K, Sitter B, Bathen TF, Seierstad T, Redalen KR, Eide L, Ree AH. Markers of Mitochondrial Metabolism in Tumor Hypoxia, Systemic Inflammation, and Adverse Outcome of Rectal Cancer. Transl Oncol 2019;12:76-83. [PMID: 30273860 DOI: 10.1016/j.tranon.2018.09.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
74 Kopecka J, Gazzano E, Castella B, Salaroglio IC, Mungo E, Massaia M, Riganti C. Mitochondrial metabolism: Inducer or therapeutic target in tumor immune-resistance? Semin Cell Dev Biol 2020;98:80-9. [PMID: 31100351 DOI: 10.1016/j.semcdb.2019.05.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
75 Pu C, Tao S, Xu J, Huang M. Harnessing Genomic Stress for Antitumor Immunity. Antioxidants & Redox Signaling 2021;34:1128-50. [DOI: 10.1089/ars.2020.8221] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Xiao MJ, Zou XF, Li B, Li BL, Wu SJ, Zhang B. Simulated aeromedical evacuation exacerbates burn induced lung injury: targeting mitochondrial DNA for reversal. Mil Med Res 2021;8:30. [PMID: 33985568 DOI: 10.1186/s40779-021-00320-9] [Reference Citation Analysis]
77 Dajon M, Iribarren K, Petitprez F, Marmier S, Lupo A, Gillard M, Ouakrim H, Victor N, Vincenzo DB, Joubert PE, Kepp O, Kroemer G, Alifano M, Damotte D, Cremer I. Toll like receptor 7 expressed by malignant cells promotes tumor progression and metastasis through the recruitment of myeloid derived suppressor cells. Oncoimmunology 2019;8:e1505174. [PMID: 30546943 DOI: 10.1080/2162402X.2018.1505174] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
78 Luo Y, Jiang QW, Wu JY, Qiu JG, Zhang WJ, Mei XL, Shi Z, Di JM. Regulation of migration and invasion by Toll-like receptor-9 signaling network in prostate cancer. Oncotarget 2015;6:22564-74. [PMID: 26087186 DOI: 10.18632/oncotarget.4197] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 4.2] [Reference Citation Analysis]
79 Na BH, Hoang TX, Kim JY. Hsp90 Inhibition Reduces TLR5 Surface Expression and NF-κB Activation in Human Myeloid Leukemia THP-1 Cells. Biomed Res Int 2018;2018:4319369. [PMID: 29651431 DOI: 10.1155/2018/4319369] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
80 Rodríguez-Nuevo A, Díaz-Ramos A, Noguera E, Díaz-Sáez F, Duran X, Muñoz JP, Romero M, Plana N, Sebastián D, Tezze C, Romanello V, Ribas F, Seco J, Planet E, Doctrow SR, González J, Borràs M, Liesa M, Palacín M, Vendrell J, Villarroya F, Sandri M, Shirihai O, Zorzano A. Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency. EMBO J 2018;37:e96553. [PMID: 29632021 DOI: 10.15252/embj.201796553] [Cited by in Crossref: 70] [Cited by in F6Publishing: 70] [Article Influence: 17.5] [Reference Citation Analysis]
81 Hou J, Greten TF, Xia Q. Immunosuppressive cell death in cancer. Nat Rev Immunol 2017;17:401. [PMID: 28480899 DOI: 10.1038/nri.2017.46] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
82 Huber R, Meier B, Otsuka A, Fenini G, Satoh T, Gehrke S, Widmer D, Levesque MP, Mangana J, Kerl K, Gebhardt C, Fujii H, Nakashima C, Nonomura Y, Kabashima K, Dummer R, Contassot E, French LE. Tumour hypoxia promotes melanoma growth and metastasis via High Mobility Group Box-1 and M2-like macrophages. Sci Rep 2016;6:29914. [PMID: 27426915 DOI: 10.1038/srep29914] [Cited by in Crossref: 56] [Cited by in F6Publishing: 61] [Article Influence: 9.3] [Reference Citation Analysis]
83 Dajon M, Iribarren K, Cremer I. Toll-like receptor stimulation in cancer: A pro- and anti-tumor double-edged sword. Immunobiology 2017;222:89-100. [PMID: 27349597 DOI: 10.1016/j.imbio.2016.06.009] [Cited by in Crossref: 83] [Cited by in F6Publishing: 91] [Article Influence: 13.8] [Reference Citation Analysis]
84 Zhang Y, Pan N, Sheng Y, Zhou M, Wen Z, Chen Y, Huang F, Wang LX. Hypoxia enhances IL-10-producing B cell generation through upregulating high-mobility group B1 on tumor cell-released autophagosomes. Immunol Lett. 2019;216:36-42. [PMID: 31568811 DOI: 10.1016/j.imlet.2019.09.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
85 Fan C, Wu J, Shen Y, Hu H, Wang Q, Mao Y, Ye B, Xiang M. Hypoxia promotes the tolerogenic phenotype of plasmacytoid dendritic cells in head and neck squamous cell carcinoma. Cancer Med 2021. [PMID: 34964283 DOI: 10.1002/cam4.4511] [Reference Citation Analysis]
86 Cottone L, Capobianco A, Gualteroni C, Monno A, Raccagni I, Valtorta S, Canu T, Di Tomaso T, Lombardo A, Esposito A, Moresco RM, Maschio AD, Naldini L, Rovere-Querini P, Bianchi ME, Manfredi AA. Leukocytes recruited by tumor-derived HMGB1 sustain peritoneal carcinomatosis. Oncoimmunology 2016;5:e1122860. [PMID: 27467932 DOI: 10.1080/2162402X.2015.1122860] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
87 Stephen B, Hajjar J. Overview of Basic Immunology and Clinical Application. In: Naing A, Hajjar J, editors. Immunotherapy. Cham: Springer International Publishing; 2020. pp. 1-36. [DOI: 10.1007/978-3-030-41008-7_1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
88 Middleton P, Vergis N. Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol 2021;14:17562848211031394. [PMID: 34377148 DOI: 10.1177/17562848211031394] [Reference Citation Analysis]
89 Li C, Li J, Li Y, Li L, Luo Y, Li J, Zhang Y, Wang Y, Liu X, Zhou X, Gong H, Jin X, Liu Y. Isorhamnetin Promotes MKN-45 Gastric Cancer Cell Apoptosis by Inhibiting PI3K-Mediated Adaptive Autophagy in a Hypoxic Environment. J Agric Food Chem 2021;69:8130-43. [PMID: 34269571 DOI: 10.1021/acs.jafc.1c02620] [Reference Citation Analysis]
90 Masuda K, Ono A, Aikata H, Kawaoka T, Nelson Hayes C, Teraoka Y, Daijo K, Nakamura-inagaki Y, Morio K, Fujino H, Kan H, Uchida T, Masaki K, Kobayashi T, Nakahara T, Makokha GN, Zhang Y, Nagaoki Y, Miki D, Tsuge M, Hiramatsu A, Imamura M, Abe-chayama H, Kawakami Y, Ochi H, Chayama K. Serum HMGB1 concentrations at 4 weeks is a useful predictor of extreme poor prognosis for advanced hepatocellular carcinoma treated with sorafenib and hepatic arterial infusion chemotherapy. J Gastroenterol 2018;53:107-18. [DOI: 10.1007/s00535-017-1348-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
91 Zhang B, Huang L, Tu J, Wu T. Hypoxia-Induced Placenta-Specific microRNA (miR-512-3p) Promotes Hepatocellular Carcinoma Progression by Targeting Large Tumor Suppressor Kinase 2. Onco Targets Ther 2020;13:6073-83. [PMID: 32612368 DOI: 10.2147/OTT.S254612] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
92 Chen R, Xie Y, Zhong X, Fu Y, Huang Y, Zhen Y, Pan P, Wang H, Bartlett DL, Billiar TR, Lotze MT, Zeh HJ 3rd, Fan XG, Tang D, Kang R. Novel chemokine-like activities of histones in tumor metastasis. Oncotarget 2016;7:61728-40. [PMID: 27623211 DOI: 10.18632/oncotarget.11226] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
93 Han KH, Kim MH, Jeong GJ, Kim AK, Chang JW, Kim DI. FGF-17 from Hypoxic Human Wharton's Jelly-Derived Mesenchymal Stem Cells Is Responsible for Maintenance of Cell Proliferation at Late Passages. Int J Stem Cells 2019;12:279-90. [PMID: 31022995 DOI: 10.15283/ijsc18042] [Reference Citation Analysis]
94 Yan J, Ying S, Cai X. MicroRNA-Mediated Regulation of HMGB1 in Human Hepatocellular Carcinoma. Biomed Res Int 2018;2018:2754941. [PMID: 29651425 DOI: 10.1155/2018/2754941] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
95 Zhang Y, Lv J, Wu G, Li W, Zhang Z, Li W, Lei X. MicroRNA-449b-5p targets HMGB1 to attenuate hepatocyte injury in liver ischemia and reperfusion. J Cell Physiol 2019. [PMID: 30805938 DOI: 10.1002/jcp.28305] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
96 Stephen B, Hajjar J. Overview of Basic Immunology and Translational Relevance for Clinical Investigators. In: Naing A, Hajjar J, editors. Immunotherapy. Cham: Springer International Publishing; 2018. pp. 1-41. [DOI: 10.1007/978-3-030-02505-2_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
97 Ryu C, Brandsdorfer C, Adams T, Hu B, Kelleher DW, Yaggi M, Manning EP, Walia A, Reeves B, Pan H, Winkler J, Minasyan M, Dela Cruz CS, Kaminski N, Gulati M, Herzog EL. Plasma mitochondrial DNA is associated with extrapulmonary sarcoidosis. Eur Respir J 2019;54:1801762. [PMID: 31273041 DOI: 10.1183/13993003.01762-2018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
98 Wang D, Liu K, Fukuyasu Y, Teshigawara K, Fu L, Wake H, Ohtsuka A, Nishibori M. HMGB1 Translocation in Neurons after Ischemic Insult: Subcellular Localization in Mitochondria and Peroxisomes. Cells 2020;9:E643. [PMID: 32155899 DOI: 10.3390/cells9030643] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
99 Efrimescu CI, Buggy PM, Buggy DJ. Neutrophil Extracellular Trapping Role in Cancer, Metastases, and Cancer-Related Thrombosis: a Narrative Review of the Current Evidence Base. Curr Oncol Rep 2021;23:118. [PMID: 34342735 DOI: 10.1007/s11912-021-01103-0] [Reference Citation Analysis]