BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, Ng KT, Forbes SJ, Guan XY, Poon RT, Fan ST, Man K. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol. 2015;62:607-616. [PMID: 25450711 DOI: 10.1016/j.jhep.2014.10.029] [Cited by in Crossref: 163] [Cited by in F6Publishing: 157] [Article Influence: 20.4] [Reference Citation Analysis]
Number Citing Articles
1 Weston CJ, Zimmermann HW, Adams DH. The Role of Myeloid-Derived Cells in the Progression of Liver Disease. Front Immunol 2019;10:893. [PMID: 31068952 DOI: 10.3389/fimmu.2019.00893] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
2 Zhong C, Li Y, Yang J, Jin S, Chen G, Li D, Fan X, Lin H. Immunotherapy for Hepatocellular Carcinoma: Current Limits and Prospects. Front Oncol 2021;11:589680. [PMID: 33854960 DOI: 10.3389/fonc.2021.589680] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
3 Wang CI, Chu PM, Chen YL, Lin YH, Chen CY. Chemotherapeutic Drug-Regulated Cytokines Might Influence Therapeutic Efficacy in HCC. Int J Mol Sci 2021;22:13627. [PMID: 34948424 DOI: 10.3390/ijms222413627] [Reference Citation Analysis]
4 Chen Z, Bachhuka A, Wei F, Wang X, Liu G, Vasilev K, Xiao Y. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. Nanoscale 2017;9:18129-52. [DOI: 10.1039/c7nr05913b] [Cited by in Crossref: 60] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
5 Wu MY, Yiang GT, Cheng PW, Chu PY, Li CJ. Molecular Targets in Hepatocarcinogenesis and Implications for Therapy. J Clin Med. 2018;7. [PMID: 30104473 DOI: 10.3390/jcm7080213] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
6 Zhang Q, Wang H, Mao C, Sun M, Dominah G, Chen L, Zhuang Z. Fatty acid oxidation contributes to IL-1β secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Mol Immunol 2018;94:27-35. [PMID: 29248877 DOI: 10.1016/j.molimm.2017.12.011] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 7.6] [Reference Citation Analysis]
7 Yan S, Fang J, Chen Y, Xie Y, Zhang S, Zhu X, Fang F. Comprehensive analysis of prognostic gene signatures based on immune infiltration of ovarian cancer. BMC Cancer 2020;20:1205. [PMID: 33287740 DOI: 10.1186/s12885-020-07695-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ning J, Ye Y, Bu D, Zhao G, Song T, Liu P, Yu W, Wang H, Li H, Ren X, Ying G, Zhao Y, Yu J. Imbalance of TGF-β1/BMP-7 pathways induced by M2-polarized macrophages promotes hepatocellular carcinoma aggressiveness. Mol Ther 2021;29:2067-87. [PMID: 33601054 DOI: 10.1016/j.ymthe.2021.02.016] [Reference Citation Analysis]
9 Chen S, Zheng P, Wang W, Yi M, Chen P, Cai J, Li J, Peng Q, Ban Y, Zhou Y, Zeng Z, Li X, Xiong W, Li G, Xiang B. Abberent expression of NOR1 protein in tumor associated macrophages contributes to the development of DEN-induced hepatocellular carcinoma. J Cell Physiol 2018;233:5002-13. [PMID: 29227538 DOI: 10.1002/jcp.26349] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
10 Liu H, Ling CC, Yeung WHO, Pang L, Liu J, Zhou J, Zhang WY, Liu XB, Ng TPK, Yang XX, Lo CM, Man K. Monocytic MDSC mobilization promotes tumor recurrence after liver transplantation via CXCL10/TLR4/MMP14 signaling. Cell Death Dis 2021;12:489. [PMID: 33990548 DOI: 10.1038/s41419-021-03788-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Liao R, Jiang N, Tang ZW, Li de W, Huang P, Luo SQ, Gong JP, Du CY. Systemic and intratumoral balances between monocytes/macrophages and lymphocytes predict prognosis in hepatocellular carcinoma patients after surgery. Oncotarget 2016;7:30951-61. [PMID: 27129159 DOI: 10.18632/oncotarget.9049] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
12 Rodríguez MM, Onorato A, Cantero MJ, Domínguez L, Bayo J, Fiore E, García M, Atorrasagasti C, Canbay A, Malvicini M, Mazzolini GD. 4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Sci Rep 2021;11:6310. [PMID: 33737571 DOI: 10.1038/s41598-021-85491-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
13 Wan S, Kuo N, Kryczek I, Zou W, Welling TH. Myeloid cells in hepatocellular carcinoma. Hepatology. 2015;62:1304-1312. [PMID: 25914264 DOI: 10.1002/hep.27867] [Cited by in Crossref: 66] [Cited by in F6Publishing: 71] [Article Influence: 9.4] [Reference Citation Analysis]
14 Guo Y, Hu J, Zhao Z, Zhong G, Gong J, Cai D. Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma. Front Oncol 2021;11:719355. [PMID: 34646769 DOI: 10.3389/fonc.2021.719355] [Reference Citation Analysis]
15 Zhou SL, Zhou J. Reply. Hepatology 2016;64:1373-4. [PMID: 27228328 DOI: 10.1002/hep.28651] [Reference Citation Analysis]
16 Hong GQ, Cai D, Gong JP, Lai X. Innate immune cells and their interaction with T cells in hepatocellular carcinoma. Oncol Lett 2021;21:57. [PMID: 33281968 DOI: 10.3892/ol.2020.12319] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Velázquez KT, Enos RT, Carson MS, Cranford TL, Bader JE, Chatzistamou I, Singh UP, Nagarkatti PS, Nagarkatti M, Davis JM, Carson JA, Murphy EA. Weight loss following diet-induced obesity does not alter colon tumorigenesis in the AOM mouse model. Am J Physiol Gastrointest Liver Physiol 2016;311:G699-712. [PMID: 27609769 DOI: 10.1152/ajpgi.00207.2016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
18 Wei R, Zhu WW, Yu GY, Wang X, Gao C, Zhou X, Lin ZF, Shao WQ, Wang SH, Lu M, Qin LX. S100 calcium-binding protein A9 from tumor-associated macrophage enhances cancer stem cell-like properties of hepatocellular carcinoma. Int J Cancer 2021;148:1233-44. [PMID: 33205453 DOI: 10.1002/ijc.33371] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66:1300-1312. [PMID: 28267621 DOI: 10.1016/j.jhep.2017.02.026] [Cited by in Crossref: 334] [Cited by in F6Publishing: 327] [Article Influence: 66.8] [Reference Citation Analysis]
20 Eckert F, Zwirner K, Boeke S, Thorwarth D, Zips D, Huber SM. Rationale for Combining Radiotherapy and Immune Checkpoint Inhibition for Patients With Hypoxic Tumors. Front Immunol 2019;10:407. [PMID: 30930892 DOI: 10.3389/fimmu.2019.00407] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
21 Elpek GO. Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update. World J Clin Cases 2021; 9(19): 4890-4917 [PMID: 34307543 DOI: 10.12998/wjcc.v9.i19.4890] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Lahmar Q, Keirsse J, Laoui D, Movahedi K, Van Overmeire E, Van Ginderachter JA. Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment. Biochim Biophys Acta 2016;1865:23-34. [PMID: 26145884 DOI: 10.1016/j.bbcan.2015.06.009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 56] [Article Influence: 6.4] [Reference Citation Analysis]
23 Zhu F, Li X, Chen S, Zeng Q, Zhao Y, Luo F. Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med Oncol. 2016;33:17. [PMID: 26781124 DOI: 10.1007/s12032-016-0729-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
24 Ehling J, Tacke F. Role of chemokine pathways in hepatobiliary cancer. Cancer Lett. 2015; Jun 26. [Epub ahead of print]. [PMID: 26123664 DOI: 10.1016/j.canlet.2015.06.017] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 5.4] [Reference Citation Analysis]
25 Cai Z, Yu C, Li S, Wang C, Fan Y, Ji Q, Chen F, Li W. A Novel Classification of Glioma Subgroup, Which Is Highly Correlated With the Clinical Characteristics and Tumor Tissue Characteristics, Based on the Expression Levels of Gβ and Gγ Genes. Front Oncol 2021;11:685823. [PMID: 34222011 DOI: 10.3389/fonc.2021.685823] [Reference Citation Analysis]
26 Sangro B, Melero I, Wadhawan S, Finn RS, Abou-Alfa GK, Cheng AL, Yau T, Furuse J, Park JW, Boyd Z, Tang HT, Shen Y, Tschaika M, Neely J, El-Khoueiry A. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J Hepatol. 2020;73:1460-1469. [PMID: 32710922 DOI: 10.1016/j.jhep.2020.07.026] [Cited by in Crossref: 32] [Cited by in F6Publishing: 40] [Article Influence: 16.0] [Reference Citation Analysis]
27 Delire B, Henriet P, Lemoine P, Leclercq IA, Stärkel P. Chronic liver injury promotes hepatocarcinoma cell seeding and growth, associated with infiltration by macrophages. Cancer Sci 2018;109:2141-52. [PMID: 29727510 DOI: 10.1111/cas.13628] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
28 Huang S, Zhao J, Song J, Li Y, Zuo R, Sa Y, Ma Z, OuYang H. Interferon alpha-inducible protein 27 (IFI27) is a prognostic marker for pancreatic cancer based on comprehensive bioinformatics analysis. Bioengineered 2021;12:8515-28. [PMID: 34592906 DOI: 10.1080/21655979.2021.1985858] [Reference Citation Analysis]
29 Alannan M, Fayyad-Kazan H, Trézéguet V, Merched A. Targeting Lipid Metabolism in Liver Cancer. Biochemistry 2020;59:3951-64. [PMID: 32930581 DOI: 10.1021/acs.biochem.0c00477] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Liu G, Ouyang X, Sun Y, Xiao Y, You B, Gao Y, Yeh S, Li Y, Chang C. The miR-92a-2-5p in exosomes from macrophages increases liver cancer cells invasion via altering the AR/PHLPP/p-AKT/β-catenin signaling. Cell Death Differ 2020;27:3258-72. [PMID: 32587378 DOI: 10.1038/s41418-020-0575-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
31 Zhou S, Hu Z, Zhou Z, Dai Z, Wang Z, Cao Y, Fan J, Huang X, Zhou J. miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis: Role of miR-28-5p in HCC metastasis. Hepatology 2016;63:1560-75. [DOI: 10.1002/hep.28445] [Cited by in Crossref: 108] [Cited by in F6Publishing: 116] [Article Influence: 18.0] [Reference Citation Analysis]
32 Degroote H, Lefere S, Vandierendonck A, Vanderborght B, Meese T, Van Nieuwerburgh F, Verhelst X, Geerts A, Van Vlierberghe H, Devisscher L. Characterization of the inflammatory microenvironment and hepatic macrophage subsets in experimental hepatocellular carcinoma models. Oncotarget 2021;12:562-77. [PMID: 33796224 DOI: 10.18632/oncotarget.27906] [Reference Citation Analysis]
33 O'Rourke JM, Patten DA, Shetty S. Tumour-associated macrophages in hepatocellular carcinoma: Pressing the metabolic switch to prevent T cell responses. J Hepatol 2019;71:243-5. [PMID: 31208893 DOI: 10.1016/j.jhep.2019.05.019] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
34 Melo EM, Oliveira VLS, Boff D, Galvão I. Pulmonary macrophages and their different roles in health and disease. Int J Biochem Cell Biol 2021;141:106095. [PMID: 34653619 DOI: 10.1016/j.biocel.2021.106095] [Reference Citation Analysis]
35 Dong N, Shi X, Wang S, Gao Y, Kuang Z, Xie Q, Li Y, Deng H, Wu Y, Li M, Li JL. M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br J Cancer 2019;121:22-33. [PMID: 31130723 DOI: 10.1038/s41416-019-0482-x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
36 Yeung OWH, Qi X, Pang L, Liu H, Ng KTP, Liu J, Lo CM, Man K. Type III TGF-β Receptor Down-Regulation Promoted Tumor Progression via Complement Component C5a Induction in Hepatocellular Carcinoma. Cancers (Basel) 2021;13:1503. [PMID: 33805946 DOI: 10.3390/cancers13071503] [Reference Citation Analysis]
37 Hou ZH, Xu XW, Fu XY, Zhou LD, Liu SP, Tan DM. Long non-coding RNA MALAT1 promotes angiogenesis and immunosuppressive properties of HCC cells by sponging miR-140. Am J Physiol Cell Physiol. 2020;318:C649-C663. [PMID: 31693399 DOI: 10.1152/ajpcell.00510.2018] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
38 Zhang Q, Lou Y, Bai XL, Liang TB. Immunometabolism: A novel perspective of liver cancer microenvironment and its influence on tumor progression. World J Gastroenterol 2018; 24(31): 3500-3512 [PMID: 30131656 DOI: 10.3748/wjg.v24.i31.3500] [Cited by in CrossRef: 26] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
39 Fan HH, Li L, Zhang YM, Yang J, Li MC, Zeng FY, Deng F. PKCζ in prostate cancer cells represses the recruitment and M2 polarization of macrophages in the prostate cancer microenvironment. Tumour Biol 2017;39:1010428317701442. [PMID: 28631559 DOI: 10.1177/1010428317701442] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
40 Jiang S, Wang R, Han L, Kuerban K, Ye L, Pan S, Li S, Yuan Y. Activation of autophagy reverses gemcitabine-induced immune inhibition of RAW264.7 macrophages by promoting TNF-α, IL-6 and MHC-II expression. Immunol Res 2021;69:352-62. [PMID: 34259987 DOI: 10.1007/s12026-021-09210-7] [Reference Citation Analysis]
41 Yu X, Guo C, Fisher PB, Subjeck JR, Wang XY. Scavenger Receptors: Emerging Roles in Cancer Biology and Immunology. Adv Cancer Res 2015;128:309-64. [PMID: 26216637 DOI: 10.1016/bs.acr.2015.04.004] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 7.6] [Reference Citation Analysis]
42 Liu H, Lo CM, Yeung OWH, Li CX, Liu XB, Qi X, Ng KTP, Liu J, Ma YY, Lam YF, Lian Q, Chan SC, Man K. NLRP3 inflammasome induced liver graft injury through activation of telomere-independent RAP1/KC axis. J Pathol. 2017;242:284-296. [PMID: 28378341 DOI: 10.1002/path.4901] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
43 Hu ZQ, Zhou SL, Zhou ZJ, Luo CB, Chen EB, Zhan H, Wang PC, Dai Z, Zhou J, Fan J, Huang XW. Overexpression of semaphorin 3A promotes tumor progression and predicts poor prognosis in hepatocellular carcinoma after curative resection. Oncotarget 2016;7:51733-46. [PMID: 27351132 DOI: 10.18632/oncotarget.10104] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
44 Romualdo GR, Leroy K, Costa CJS, Prata GB, Vanderborght B, da Silva TC, Barbisan LF, Andraus W, Devisscher L, Câmara NOS, Vinken M, Cogliati B. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers (Basel) 2021;13:5583. [PMID: 34771745 DOI: 10.3390/cancers13215583] [Reference Citation Analysis]
45 Qin H, Chen Y. Lipid Metabolism and Tumor Antigen Presentation. Adv Exp Med Biol 2021;1316:169-89. [PMID: 33740250 DOI: 10.1007/978-981-33-6785-2_11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Yu X, Xu M, Li N, Li Z, Li H, Shao S, Zou K, Zou L. β-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer. Biochem Biophys Res Commun 2017;490:514-20. [PMID: 28624450 DOI: 10.1016/j.bbrc.2017.06.071] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 7.4] [Reference Citation Analysis]
47 Xue P, Fu J, Zhou Y. The Aryl Hydrocarbon Receptor and Tumor Immunity. Front Immunol 2018;9:286. [PMID: 29487603 DOI: 10.3389/fimmu.2018.00286] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 11.5] [Reference Citation Analysis]
48 Kuchuk O, Tuccitto A, Citterio D, Huber V, Camisaschi C, Milione M, Vergani B, Villa A, Alison MR, Carradori S, Supuran CT, Rivoltini L, Castelli C, Mazzaferro V. pH regulators to target the tumor immune microenvironment in human hepatocellular carcinoma. Oncoimmunology 2018;7:e1445452. [PMID: 29900055 DOI: 10.1080/2162402X.2018.1445452] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 7.5] [Reference Citation Analysis]
49 Song H, Lim DY, Jung JI, Cho HJ, Park SY, Kwon GT, Kang YH, Lee KW, Choi MS, Park JHY. Dietary oleuropein inhibits tumor angiogenesis and lymphangiogenesis in the B16F10 melanoma allograft model: a mechanism for the suppression of high-fat diet-induced solid tumor growth and lymph node metastasis. Oncotarget 2017;8:32027-42. [PMID: 28410190 DOI: 10.18632/oncotarget.16757] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
50 Tan HY, Wang N, Tsao SW, Che CM, Yuen MF, Feng Y. IRE1α inhibition by natural compound genipin on tumour associated macrophages reduces growth of hepatocellular carcinoma. Oncotarget 2016;7:43792-804. [PMID: 27270308 DOI: 10.18632/oncotarget.9696] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
51 Patten DA, Wilkinson AL, O'Rourke JM, Shetty S. Prognostic Value and Potential Immunoregulatory Role of SCARF1 in Hepatocellular Carcinoma. Front Oncol 2020;10:565950. [PMID: 34354939 DOI: 10.3389/fonc.2020.565950] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Park DJ, Sung PS, Lee GW, Cho S, Kim SM, Kang BY, Hur W, Yang H, Lee SK, Lee SH, Jung ES, Seo CH, Ahn J, Choi HJ, You YK, Jang JW, Bae SH, Choi JY, Yoon SK. Preferential Expression of Programmed Death Ligand 1 Protein in Tumor-Associated Macrophages and Its Potential Role in Immunotherapy for Hepatocellular Carcinoma. Int J Mol Sci 2021;22:4710. [PMID: 33946835 DOI: 10.3390/ijms22094710] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Yoon SH, Choi SW, Nam SW, Lee KB, Nam JW. Preoperative immune landscape predisposes adverse outcomes in hepatocellular carcinoma patients with liver transplantation. NPJ Precis Oncol 2021;5:27. [PMID: 33772139 DOI: 10.1038/s41698-021-00167-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Xiao H, Guo Y, Li B, Li X, Wang Y, Han S, Cheng D, Shuai X. M2-Like Tumor-Associated Macrophage-Targeted Codelivery of STAT6 Inhibitor and IKKβ siRNA Induces M2-to-M1 Repolarization for Cancer Immunotherapy with Low Immune Side Effects. ACS Cent Sci 2020;6:1208-22. [PMID: 32724855 DOI: 10.1021/acscentsci.9b01235] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
55 Tsilimigras DI, Ntanasis-Stathopoulos I, Moris D, Pawlik TM. Liver Tumor Microenvironment. Adv Exp Med Biol 2020;1296:227-41. [PMID: 34185296 DOI: 10.1007/978-3-030-59038-3_14] [Reference Citation Analysis]
56 Zhang J, Chang L, Zhang X, Zhou Z, Gao Y. Meta-Analysis of the Prognostic and Clinical Value of Tumor-Associated Macrophages in Hepatocellular Carcinoma. J Invest Surg 2021;34:297-306. [PMID: 31412745 DOI: 10.1080/08941939.2019.1631411] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
57 Yu LX, Ling Y, Wang HY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol 2018;2:6. [PMID: 29872724 DOI: 10.1038/s41698-018-0048-z] [Cited by in Crossref: 75] [Cited by in F6Publishing: 82] [Article Influence: 18.8] [Reference Citation Analysis]
58 Bartneck M, Schrammen PL, Möckel D, Govaere O, Liepelt A, Krenkel O, Ergen C, McCain MV, Eulberg D, Luedde T, Trautwein C, Kiessling F, Reeves H, Lammers T, Tacke F. The CCR2+ Macrophage Subset Promotes Pathogenic Angiogenesis for Tumor Vascularization in Fibrotic Livers. Cell Mol Gastroenterol Hepatol 2019;7:371-90. [PMID: 30704985 DOI: 10.1016/j.jcmgh.2018.10.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 7.3] [Reference Citation Analysis]
59 Guo B, Li L, Guo J, Liu A, Wu J, Wang H, Shi J, Pang D, Cao Q. M2 tumor-associated macrophages produce interleukin-17 to suppress oxaliplatin-induced apoptosis in hepatocellular carcinoma. Oncotarget 2017;8:44465-76. [PMID: 28591705 DOI: 10.18632/oncotarget.17973] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
60 Liu H, Man K. New Insights in Mechanisms and Therapeutics for Short- and Long-Term Impacts of Hepatic Ischemia Reperfusion Injury Post Liver Transplantation. Int J Mol Sci 2021;22:8210. [PMID: 34360975 DOI: 10.3390/ijms22158210] [Reference Citation Analysis]
61 Huang J, Zhang L, Chen J, Wan D, Zhou L, Zheng S, Qiao Y. The Landscape of Immune Cells Indicates Prognosis and Applicability of Checkpoint Therapy in Hepatocellular Carcinoma. Front Oncol 2021;11:744951. [PMID: 34650926 DOI: 10.3389/fonc.2021.744951] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Zhang L, Zhang L, Shi Y. Down-regulated paxillin suppresses cell proliferation and invasion by inhibiting M2 macrophage polarization in colon cancer. Biological Chemistry 2018;399:1285-95. [DOI: 10.1515/hsz-2018-0002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
63 Saviano A, Roehlen N, Virzì A, Roca Suarez AA, Hoshida Y, Lupberger J, Baumert TF. Stromal and Immune Drivers of Hepatocarcinogenesis. In: Hoshida Y, editor. Hepatocellular Carcinoma. Cham: Springer International Publishing; 2019. pp. 317-31. [DOI: 10.1007/978-3-030-21540-8_15] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
64 Kazankov K, Rode A, Simonsen K, Villadsen GE, Nicoll A, Møller HJ, Lim L, Angus P, Kronborg I, Arachchi N, Gorelik A, Liew D, Vilstrup H, Frystyk J, Grønbæk H. Macrophage activation marker soluble CD163 may predict disease progression in hepatocellular carcinoma. Scand J Clin Lab Invest 2016;76:64-73. [PMID: 26549495 DOI: 10.3109/00365513.2015.1099722] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
65 Wang N, Tan HY, Lu Y, Chan YT, Wang D, Guo W, Xu Y, Zhang C, Chen F, Tang G, Feng Y. PIWIL1 governs the crosstalk of cancer cell metabolism and immunosuppressive microenvironment in hepatocellular carcinoma. Signal Transduct Target Ther 2021;6:86. [PMID: 33633112 DOI: 10.1038/s41392-021-00485-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
66 Xu F, Wei Y, Tang Z, Liu B, Dong J. Tumor‑associated macrophages in lung cancer: Friend or foe? (Review). Mol Med Rep 2020;22:4107-15. [PMID: 33000214 DOI: 10.3892/mmr.2020.11518] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
67 Yang C, Wei C, Wang S, Shi D, Zhang C, Lin X, Dou R, Xiong B. Elevated CD163+/CD68+ Ratio at Tumor Invasive Front is Closely Associated with Aggressive Phenotype and Poor Prognosis in Colorectal Cancer. Int J Biol Sci 2019;15:984-98. [PMID: 31182919 DOI: 10.7150/ijbs.29836] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
68 Laurikainen H, Vuorela A, Toivonen A, Reinert-Hartwall L, Trontti K, Lindgren M, Keinänen J, Mäntylä T, Paju J, Ilonen T, Armio RL, Walta M, Tuisku J, Helin S, Marjamäki P, Hovatta I, Therman S, Vaarala O, Linnaranta O, Kieseppä T, Salokangas RKR, Honkanen J, Hietala J, Suvisaari J. Elevated serum chemokine CCL22 levels in first-episode psychosis: associations with symptoms, peripheral immune state and in vivo brain glial cell function. Transl Psychiatry 2020;10:94. [PMID: 32179746 DOI: 10.1038/s41398-020-0776-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
69 Qi X, Ng KT, Shao Y, Li CX, Geng W, Ling CC, Ma YY, Liu XB, Liu H, Liu J, Yeung WH, Lo CM, Man K. The Clinical Significance and Potential Therapeutic Role of GPx3 in Tumor Recurrence after Liver Transplantation. Theranostics 2016;6:1934-46. [PMID: 27570561 DOI: 10.7150/thno.16023] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
70 Atanasov G, Dino K, Schierle K, Dietel C, Aust G, Pratschke J, Seehofer D, Schmelzle M, Hau HM. Recipient Hepatic Tumor-Associated Immunologic Infiltrates Predict Outcomes After Liver Transplantation for Hepatocellular Carcinoma. Ann Transplant 2020;25:e919414. [PMID: 32165607 DOI: 10.12659/AOT.919414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
71 Xiang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 2021;6:75. [PMID: 33619259 DOI: 10.1038/s41392-021-00484-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
72 Fu HY, Bao WM, Yang CX, Lai WJ, Xu JM, Yu HY, Yang YN, Tan X, Gupta AK, Tang YM. Kupffer Cells Regulate Natural Killer Cells Via the NK group 2, Member D (NKG2D)/Retinoic Acid Early Inducible-1 (RAE-1) Interaction and Cytokines in a Primary Biliary Cholangitis Mouse Model. Med Sci Monit 2020;26:e923726. [PMID: 32599603 DOI: 10.12659/MSM.923726] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
73 Pang L, Ng KT, Liu J, Yeung WO, Zhu J, Chiu TS, Liu H, Chen Z, Lo CM, Man K. Plasmacytoid dendritic cells recruited by HIF-1α/eADO/ADORA1 signaling induce immunosuppression in hepatocellular carcinoma. Cancer Lett 2021;522:80-92. [PMID: 34536555 DOI: 10.1016/j.canlet.2021.09.022] [Reference Citation Analysis]
74 Lam JH, Ng HHM, Lim CJ, Sim XN, Malavasi F, Li H, Loh JJH, Sabai K, Kim JK, Ong CCH, Loh T, Leow WQ, Choo SP, Toh HC, Lee SY, Chan CY, Chew V, Lim TS, Yeong J, Lim TKH. Expression of CD38 on Macrophages Predicts Improved Prognosis in Hepatocellular Carcinoma. Front Immunol 2019;10:2093. [PMID: 31552039 DOI: 10.3389/fimmu.2019.02093] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
75 Langhans B, Nischalke HD, Krämer B, Dold L, Lutz P, Mohr R, Vogt A, Toma M, Eis-Hübinger AM, Nattermann J, Strassburg CP, Gonzalez-Carmona MA, Spengler U. Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma. Cancer Immunol Immunother 2019;68:2055-66. [PMID: 31724091 DOI: 10.1007/s00262-019-02427-4] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
76 Yang L, Li T, Shi H, Zhou Z, Huang Z, Lei X. The cellular and molecular components involved in pre-metastatic niche formation in colorectal cancer liver metastasis. Expert Review of Gastroenterology & Hepatology 2021;15:389-99. [DOI: 10.1080/17474124.2021.1848543] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
77 Ruf B, Heinrich B, Greten TF. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cell Mol Immunol. 2021;18:112-127. [PMID: 33235387 DOI: 10.1038/s41423-020-00572-w] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
78 Jiang M, Zeng Q, Dai S, Liang H, Dai F, Xie X, Lu K, Gao C. Comparative analysis of hepatocellular carcinoma and cirrhosis gene expression profiles. Mol Med Rep 2017;15:380-6. [PMID: 27959423 DOI: 10.3892/mmr.2016.6021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
79 Eggert T, Greten TF. Tumor regulation of the tissue environment in the liver. Pharmacol Ther 2017;173:47-57. [PMID: 28167218 DOI: 10.1016/j.pharmthera.2017.02.005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
80 Gao Y, Fan X, Li N, Du C, Yang B, Qin W, Fu J, Markowitz GJ, Wang H, Ma J, Cheng S, Yang P. CCL22 signaling contributes to sorafenib resistance in hepatitis B virus-associated hepatocellular carcinoma. Pharmacol Res 2020;157:104800. [PMID: 32278046 DOI: 10.1016/j.phrs.2020.104800] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
81 Zanganeh S, Spitler R, Hutter G, Ho JQ, Pauliah M, Mahmoudi M. Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy. Immunotherapy 2017;9:819-35. [DOI: 10.2217/imt-2017-0041] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 6.2] [Reference Citation Analysis]
82 Matsuura K, Takami T, Maeda M, Hisanaga T, Fujisawa K, Saeki I, Matsumoto T, Hidaka I, Yamamoto N, Sakaida I. Evaluation of the Effects of Cultured Bone Marrow Mesenchymal Stem Cell Infusion on Hepatocarcinogenesis in Hepatocarcinogenic Mice With Liver Cirrhosis. Transplant Proc 2019;51:925-35. [PMID: 30979485 DOI: 10.1016/j.transproceed.2019.03.011] [Reference Citation Analysis]
83 Han Y, Guo W, Ren T, Huang Y, Wang S, Liu K, Zheng B, Yang K, Zhang H, Liang X. Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis. Cancer Lett 2019;440-441:116-25. [PMID: 30343113 DOI: 10.1016/j.canlet.2018.10.011] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 12.0] [Reference Citation Analysis]
84 He Y, Hwang S, Ahmed YA, Feng D, Li N, Ribeiro M, Lafdil F, Kisseleva T, Szabo G, Gao B. Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cell Mol Immunol 2021;18:18-37. [PMID: 33203939 DOI: 10.1038/s41423-020-00580-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
85 Chen Q, Sun T, Jiang C. Recent Advancements in Nanomedicine for 'Cold' Tumor Immunotherapy. Nanomicro Lett 2021;13:92. [PMID: 34138315 DOI: 10.1007/s40820-021-00622-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Yang Y, Zhang M, Jin C, Ding Y, Yang M, Wang R, Zhou Y, Zhou Y, Li T, Wang K, Hu R. Absent in melanoma 2 suppresses epithelial-mesenchymal transition via Akt and inflammasome pathways in human colorectal cancer cells. J Cell Biochem 2019;120:17744-56. [PMID: 31210372 DOI: 10.1002/jcb.29040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
87 Deng L, He K, Pan Y, Wang H, Luo Y, Xia Q. The role of tumor-associated macrophages in primary hepatocellular carcinoma and its related targeting therapy. Int J Med Sci 2021;18:2109-16. [PMID: 33859517 DOI: 10.7150/ijms.56003] [Reference Citation Analysis]
88 Dou L, Shi X, He X, Gao Y. Macrophage Phenotype and Function in Liver Disorder. Front Immunol 2019;10:3112. [PMID: 32047496 DOI: 10.3389/fimmu.2019.03112] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
89 Li Q, Han L, Ruan S, Shen S, Cao Q, Cai X, Yan Y, Peng B, Hua Y. The prognostic value of neuromedin U in patients with hepatocellular carcinoma. BMC Cancer 2020;20:95. [PMID: 32013887 DOI: 10.1186/s12885-020-6532-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
90 Sun J, Sun J, Song B, Zhang L, Shao Q, Liu Y, Yuan D, Zhang Y, Qu X. Fucoidan inhibits CCL22 production through NF-κB pathway in M2 macrophages: a potential therapeutic strategy for cancer. Sci Rep 2016;6:35855. [PMID: 27775051 DOI: 10.1038/srep35855] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
91 Tian B, Zhou L, Wang J, Yang P. miR-660-5p-loaded M2 macrophages-derived exosomes augment hepatocellular carcinoma development through regulating KLF3. Int Immunopharmacol 2021;101:108157. [PMID: 34673296 DOI: 10.1016/j.intimp.2021.108157] [Reference Citation Analysis]
92 Cacicedo ML, Medina-Montano C, Kaps L, Kappel C, Gehring S, Bros M. Role of Liver-Mediated Tolerance in Nanoparticle-Based Tumor Therapy. Cells 2020;9:E1985. [PMID: 32872352 DOI: 10.3390/cells9091985] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
93 Stahl EC, Haschak MJ, Popovic B, Brown BN. Macrophages in the Aging Liver and Age-Related Liver Disease. Front Immunol. 2018;9:2795. [PMID: 30555477 DOI: 10.3389/fimmu.2018.02795] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 8.5] [Reference Citation Analysis]
94 Degroote H, Van Dierendonck A, Geerts A, Van Vlierberghe H, Devisscher L. Preclinical and Clinical Therapeutic Strategies Affecting Tumor-Associated Macrophages in Hepatocellular Carcinoma. J Immunol Res 2018;2018:7819520. [PMID: 30410942 DOI: 10.1155/2018/7819520] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
95 Zhuang Y, Zhao X, Yuan B, Zeng Z, Chen Y. Blocking the CCL5-CCR5 Axis Using Maraviroc Promotes M1 Polarization of Macrophages Cocultured with Irradiated Hepatoma Cells. J Hepatocell Carcinoma 2021;8:599-611. [PMID: 34178876 DOI: 10.2147/JHC.S300165] [Reference Citation Analysis]
96 Pascut D, Pratama MY, Vo NVT, Masadah R, Tiribelli C. The Crosstalk between Tumor Cells and the Microenvironment in Hepatocellular Carcinoma: The Role of Exosomal microRNAs and their Clinical Implications. Cancers (Basel) 2020;12:E823. [PMID: 32235370 DOI: 10.3390/cancers12040823] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
97 Griess B, Mir S, Datta K, Teoh-fitzgerald M. Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radical Biology and Medicine 2020;147:48-60. [DOI: 10.1016/j.freeradbiomed.2019.12.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
98 Patten DA, Wilkinson AL, O'Keeffe A, Shetty S. Scavenger Receptors: Novel Roles in the Pathogenesis of Liver Inflammation and Cancer. Semin Liver Dis 2021. [PMID: 34553345 DOI: 10.1055/s-0041-1733876] [Reference Citation Analysis]
99 Zhou Z, Peng Y, Wu X, Meng S, Yu W, Zhao J, Zhang H, Wang J, Li W. CCL18 secreted from M2 macrophages promotes migration and invasion via the PI3K/Akt pathway in gallbladder cancer. Cell Oncol (Dordr) 2019;42:81-92. [PMID: 30276551 DOI: 10.1007/s13402-018-0410-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
100 Liu J, Fan L, Yu H, Zhang J, He Y, Feng D, Wang F, Li X, Liu Q, Li Y, Guo Z, Gao B, Wei W, Wang H, Sun G. Endoplasmic Reticulum Stress Causes Liver Cancer Cells to Release Exosomal miR-23a-3p and Up-regulate Programmed Death Ligand 1 Expression in Macrophages. Hepatology 2019;70:241-58. [PMID: 30854665 DOI: 10.1002/hep.30607] [Cited by in Crossref: 52] [Cited by in F6Publishing: 93] [Article Influence: 17.3] [Reference Citation Analysis]
101 Xi S, Zheng X, Li X, Jiang Y, Wu Y, Gong J, Jie Y, Li Z, Cao J, Sha L, Zhang M, Chong Y. Activated Hepatic Stellate Cells Induce Infiltration and Formation of CD163+ Macrophages via CCL2/CCR2 Pathway. Front Med (Lausanne) 2021;8:627927. [PMID: 33614685 DOI: 10.3389/fmed.2021.627927] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
102 Yang Y, Luo NS, Ying R, Xie Y, Chen JY, Wang XQ, Gu ZJ, Mai JT, Liu WH, Wu MX, Chen ZT, Fang YB, Zhang HF, Zuo ZY, Wang JF, Chen YX. Macrophage-derived foam cells impair endothelial barrier function by inducing endothelial-mesenchymal transition via CCL-4. Int J Mol Med 2017;40:558-68. [PMID: 28656247 DOI: 10.3892/ijmm.2017.3034] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.6] [Reference Citation Analysis]
103 Du K, Li Y, Liu J, Chen W, Wei Z, Luo Y, Liu H, Qi Y, Wang F, Sui J. A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Mol Ther 2021;29:1572-84. [PMID: 33429083 DOI: 10.1016/j.ymthe.2021.01.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
104 Liu G, Yin L, Ouyang X, Zeng K, Xiao Y, Li Y. M2 Macrophages Promote HCC Cells Invasion and Migration via miR-149-5p/MMP9 Signaling. J Cancer 2020;11:1277-87. [PMID: 31956374 DOI: 10.7150/jca.35444] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
105 Flynn MJ, Sayed AA, Sharma R, Siddique A, Pinato DJ. Challenges and Opportunities in the Clinical Development of Immune Checkpoint Inhibitors for Hepatocellular Carcinoma. Hepatology 2019;69:2258-70. [DOI: 10.1002/hep.30337] [Cited by in Crossref: 28] [Cited by in F6Publishing: 35] [Article Influence: 9.3] [Reference Citation Analysis]
106 Shwartz A, Goessling W, Yin C. Macrophages in Zebrafish Models of Liver Diseases. Front Immunol 2019;10:2840. [PMID: 31867007 DOI: 10.3389/fimmu.2019.02840] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
107 Santhakumar C, Gane EJ, Liu K, Mccaughan GW. Current perspectives on the tumor microenvironment in hepatocellular carcinoma. Hepatol Int 2020;14:947-57. [DOI: 10.1007/s12072-020-10104-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
108 Chen J, Huang Z, Liao C, Hu X, Li S, Qi M, Fan X, Huang Y. LncRNA TP73-AS1/miR-539/MMP-8 axis modulates M2 macrophage polarization in hepatocellular carcinoma via TGF-β1 signaling. Cellular Signalling 2020;75:109738. [DOI: 10.1016/j.cellsig.2020.109738] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
109 Sun CQ, Arnold RS, Hsieh CL, Dorin JR, Lian F, Li Z, Petros JA. Discovery and mechanisms of host defense to oncogenesis: targeting the β-defensin-1 peptide as a natural tumor inhibitor. Cancer Biol Ther 2019;20:774-86. [PMID: 30900935 DOI: 10.1080/15384047.2018.1564564] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
110 Shirmohammadi E, Ebrahimi SS, Farshchi A, Salimi M. The efficacy of etanercept as anti-breast cancer treatment is attenuated by residing macrophages. BMC Cancer 2020;20:836. [PMID: 32883235 DOI: 10.1186/s12885-020-07228-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
111 Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17:306-321. [PMID: 28317925 DOI: 10.1038/nri.2017.11] [Cited by in Crossref: 442] [Cited by in F6Publishing: 431] [Article Influence: 88.4] [Reference Citation Analysis]
112 Sapisochin G, Hibi T, Toso C, Man K, Berenguer M, Heimbach J, Greten TF, Pugh TJ, Dawson LA, Mazzaferro V. Transplant Oncology in Primary and Metastatic Liver Tumors: Principles, Evidence, and Opportunities. Ann Surg 2021;273:483-93. [PMID: 33065633 DOI: 10.1097/SLA.0000000000004071] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
113 Tikhanovich I, Zhao J, Bridges B, Kumer S, Roberts B, Weinman SA. Arginine methylation regulates c-Myc-dependent transcription by altering promoter recruitment of the acetyltransferase p300. J Biol Chem. 2017;292:13333-13344. [PMID: 28652407 DOI: 10.1074/jbc.m117.797928] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
114 Giraud J, Chalopin D, Blanc JF, Saleh M. Hepatocellular Carcinoma Immune Landscape and the Potential of Immunotherapies. Front Immunol 2021;12:655697. [PMID: 33815418 DOI: 10.3389/fimmu.2021.655697] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
115 Ning G, Huang YL, Zhen LM, Xu WX, Li XJ, Wu LN, Liu Y, Xie C, Peng L. Prognostic Value of Complement Component 2 and Its Correlation with Immune Infiltrates in Hepatocellular Carcinoma. Biomed Res Int 2020;2020:3765937. [PMID: 32626741 DOI: 10.1155/2020/3765937] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
116 Pu J, Xu Z, Nian J, Fang Q, Yang M, Huang Y, Li W, Ge B, Wang J, Wei H. M2 macrophage-derived extracellular vesicles facilitate CD8+T cell exhaustion in hepatocellular carcinoma via the miR-21-5p/YOD1/YAP/β-catenin pathway. Cell Death Discov 2021;7:182. [PMID: 34282135 DOI: 10.1038/s41420-021-00556-3] [Reference Citation Analysis]
117 Liu X, Zheng S, Peng Y, Zhuang J, Yang Y, Xu Y, Guan G. Construction of the Prediction Model for Locally Advanced Rectal Cancer Following Neoadjuvant Chemoradiotherapy Based on Pretreatment Tumor-Infiltrating Macrophage-Associated Biomarkers. Onco Targets Ther 2021;14:2599-610. [PMID: 33880038 DOI: 10.2147/OTT.S297263] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
118 Spranger S. Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. Int Immunol 2016;28:383-91. [PMID: 26989092 DOI: 10.1093/intimm/dxw014] [Cited by in Crossref: 125] [Cited by in F6Publishing: 122] [Article Influence: 20.8] [Reference Citation Analysis]
119 Wang TT, Yuan JH, Ma JZ, Yang WJ, Liu XN, Yin YP, Liu Y, Pan W, Sun SH. CTGF secreted by mesenchymal-like hepatocellular carcinoma cells plays a role in the polarization of macrophages in hepatocellular carcinoma progression. Biomed Pharmacother 2017;95:111-9. [PMID: 28837877 DOI: 10.1016/j.biopha.2017.08.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
120 Qi X, Wong BL, Lau SH, Ng KT, Kwok SY, Kin-Wai Sun C, Tzang FC, Shao Y, Li CX, Geng W, Ling CC, Ma YY, Liu XB, Liu H, Liu J, Yeung WH, Lo CM, Man K. A hemoglobin-based oxygen carrier sensitized Cisplatin based chemotherapy in hepatocellular carcinoma. Oncotarget 2017;8:85311-25. [PMID: 29156721 DOI: 10.18632/oncotarget.19672] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
121 Roth GS, Decaens T. Liver immunotolerance and hepatocellular carcinoma: Patho-physiological mechanisms and therapeutic perspectives. Eur J Cancer 2017;87:101-12. [PMID: 29145036 DOI: 10.1016/j.ejca.2017.10.010] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
122 Dubot P, Astudillo L, Therville N, Sabourdy F, Stirnemann J, Levade T, Andrieu-Abadie N. Are Glucosylceramide-Related Sphingolipids Involved in the Increased Risk for Cancer in Gaucher Disease Patients? Review and Hypotheses. Cancers (Basel) 2020;12:E475. [PMID: 32085512 DOI: 10.3390/cancers12020475] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
123 Cai H, Zhu XD, Ao JY, Ye BG, Zhang YY, Chai ZT, Wang CH, Shi WK, Cao MQ, Li XL, Sun HC. Colony-stimulating factor-1-induced AIF1 expression in tumor-associated macrophages enhances the progression of hepatocellular carcinoma. Oncoimmunology 2017;6:e1333213. [PMID: 28932635 DOI: 10.1080/2162402X.2017.1333213] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 4.6] [Reference Citation Analysis]
124 Ng KT, Lo CM, Wong N, Li CX, Qi X, Liu XB, Geng W, Yeung OW, Ma YY, Chan SC, Man K. Early-phase circulating miRNAs predict tumor recurrence and survival of hepatocellular carcinoma patients after liver transplantation. Oncotarget 2016;7:19824-39. [PMID: 26918346 DOI: 10.18632/oncotarget.7627] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
125 Boutilier AJ, Elsawa SF. Macrophage Polarization States in the Tumor Microenvironment. Int J Mol Sci 2021;22:6995. [PMID: 34209703 DOI: 10.3390/ijms22136995] [Reference Citation Analysis]
126 Jiang Z, Chen H, Su M, Wu L, Yu X, Liu Z. MicroRNA-23a-3p influences the molecular mechanism of gastric cancer cells via CCL22/PI3K/Akt axis. Bioengineered 2021;12:11277-87. [PMID: 34874224 DOI: 10.1080/21655979.2021.2002620] [Reference Citation Analysis]
127 Golonka RM, Vijay-Kumar M. Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Adv Cancer Res 2021;149:171-255. [PMID: 33579424 DOI: 10.1016/bs.acr.2020.10.004] [Reference Citation Analysis]
128 Feng R, Morine Y, Ikemoto T, Imura S, Iwahashi S, Saito Y, Shimada M. Nrf2 activation drive macrophages polarization and cancer cell epithelial-mesenchymal transition during interaction. Cell Commun Signal 2018;16:54. [PMID: 30180849 DOI: 10.1186/s12964-018-0262-x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 9.3] [Reference Citation Analysis]
129 Zhou J, Zheng S, Liu T, Liu Q, Chen Y, Tan D, Ma R, Lu X. IL-1β from M2 macrophages promotes migration and invasion of ESCC cells enhancing epithelial-mesenchymal transition and activating NF-κB signaling pathway. J Cell Biochem 2018;119:7040-52. [PMID: 29737564 DOI: 10.1002/jcb.26918] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
130 Stahl EC, Delgado ER, Alencastro F, LoPresti ST, Wilkinson PD, Roy N, Haschak MJ, Skillen CD, Monga SP, Duncan AW, Brown BN. Inflammation and Ectopic Fat Deposition in the Aging Murine Liver Is Influenced by CCR2. Am J Pathol 2020;190:372-87. [PMID: 31843499 DOI: 10.1016/j.ajpath.2019.10.016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
131 Xia Y, Brown ZJ, Huang H, Tsung A. Metabolic reprogramming of immune cells: Shaping the tumor microenvironment in hepatocellular carcinoma. Cancer Med 2021. [PMID: 34390203 DOI: 10.1002/cam4.4177] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
132 Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res 2021;40:13. [PMID: 33407720 DOI: 10.1186/s13046-020-01808-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Huang CY, Wang Y, Luo GY, Han F, Li YQ, Zhou ZG, Xu GL. Relationship Between PD-L1 Expression and CD8+ T-cell Immune Responses in Hepatocellular Carcinoma. J Immunother. 2017;40:323-333. [PMID: 29028787 DOI: 10.1097/cji.0000000000000187] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
134 Lin Y, Li B, Yang X, Cai Q, Liu W, Tian M, Luo H, Yin W, Song Y, Shi Y, He R. Fibroblastic FAP promotes intrahepatic cholangiocarcinoma growth via MDSCs recruitment. Neoplasia 2019;21:1133-42. [PMID: 31759251 DOI: 10.1016/j.neo.2019.10.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
135 Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X. Tumor-Associated Macrophages: Recent Insights and Therapies. Front Oncol 2020;10:188. [PMID: 32161718 DOI: 10.3389/fonc.2020.00188] [Cited by in Crossref: 88] [Cited by in F6Publishing: 83] [Article Influence: 44.0] [Reference Citation Analysis]
136 Tian Z, Hou X, Liu W, Han Z, Wei L. Macrophages and hepatocellular carcinoma.Cell Biosci. 2019;9:79. [PMID: 31572568 DOI: 10.1186/s13578-019-0342-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
137 Meng L, Ma R, Yan R, Yuan D, Li Y, Shi L, Li K. Profiles of immune infiltration in the tumor microenvironment of hepatocellular carcinoma. J Gastrointest Oncol 2021;12:1152-63. [PMID: 34295564 DOI: 10.21037/jgo-21-291] [Reference Citation Analysis]
138 Guo L, Cheng X, Chen H, Chen C, Xie S, Zhao M, Liu D, Deng Q, Liu Y, Wang X, Chen X, Wang J, Yin Z, Qi S, Gao J, Ma Y, Guo N, Shi M. Induction of breast cancer stem cells by M1 macrophages through Lin-28B-let-7-HMGA2 axis. Cancer Lett 2019;452:213-25. [PMID: 30917918 DOI: 10.1016/j.canlet.2019.03.032] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
139 Lu L, Liu YJ, Cheng PQ, Hu D, Xu HC, Ji G. Macrophages play a role in inflammatory transformation of colorectal cancer. World J Gastrointest Oncol 2021; 13(12): 2013-2028 [DOI: 10.4251/wjgo.v13.i12.2013] [Reference Citation Analysis]
140 Asai A, Tsuchimoto Y, Ohama H, Fukunishi S, Tsuda Y, Kobayashi M, Higuchi K, Suzuki F. Host antitumor resistance improved by the macrophage polarization in a chimera model of patients with HCC. Oncoimmunology 2017;6:e1299301. [PMID: 28507807 DOI: 10.1080/2162402X.2017.1299301] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
141 Yu Q, Wang Y, Dong L, He Y, Liu R, Yang Q, Cao Y, Wang Y, Jia A, Bi Y, Liu G. Regulations of Glycolytic Activities on Macrophages Functions in Tumor and Infectious Inflammation. Front Cell Infect Microbiol 2020;10:287. [PMID: 32596169 DOI: 10.3389/fcimb.2020.00287] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
142 Deng Y, Hu JC, He SH, Lou B, Ding TB, Yang JT, Mo MG, Ye DY, Zhou L, Jiang XC, Yu K, Dong JB. Sphingomyelin synthase 2 facilitates M2-like macrophage polarization and tumor progression in a mouse model of triple-negative breast cancer. Acta Pharmacol Sin 2021;42:149-59. [PMID: 32451413 DOI: 10.1038/s41401-020-0419-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
143 Mroweh M, Decaens T, Marche PN, Macek Jilkova Z, Clément F. Modulating the Crosstalk between the Tumor and Its Microenvironment Using RNA Interference: A Treatment Strategy for Hepatocellular Carcinoma. Int J Mol Sci 2020;21:E5250. [PMID: 32722054 DOI: 10.3390/ijms21155250] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
144 Takikawa A, Usui I, Fujisaka S, Tsuneyama K, Okabe K, Nakagawa T, Nawaz A, Kado T, Jojima T, Aso Y, Hayakawa Y, Yagi K, Tobe K. Macrophage-specific hypoxia-inducible factor-1α deletion suppresses the development of liver tumors in high-fat diet-fed obese and diabetic mice. J Diabetes Investig 2019;10:1411-8. [PMID: 30897274 DOI: 10.1111/jdi.13047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
145 Hu B, Lin JZ, Yang XB, Sang XT. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: A review. Cell Prolif 2020;53:e12772. [PMID: 32003505 DOI: 10.1111/cpr.12772] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
146 Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, Xiong B. M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling. Onco Targets Ther 2019;12:3051-63. [PMID: 31114248 DOI: 10.2147/OTT.S198126] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
147 Wu J, Ma XL, Tian L, Zhang CY, Wang BL, Hu YY, Gao XH, Zhou Y, Shen MN, Peng YF, Pan BS, Zhou J, Fan J, Yang XR, Guo W. Serum IgG4:IgG Ratio Predicts Recurrence of Patients with Hepatocellular Carcinoma after Curative Resection. J Cancer 2017;8:1338-46. [PMID: 28638447 DOI: 10.7150/jca.18030] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
148 Tan HY, Wang N, Man K, Tsao SW, Che CM, Feng Y. Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin. Cell Death Dis 2015;6:e1942. [PMID: 26492375 DOI: 10.1038/cddis.2015.271] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 8.7] [Reference Citation Analysis]
149 Xue Y, Liu H, Yang XX, Pang L, Liu J, Ng KTP, Yeung OWH, Lam YF, Zhang WY, Lo CM, Man K. Inhibition of Carnitine Palmitoyltransferase 1A Aggravates Fatty Liver Graft Injury via Promoting Mitochondrial Permeability Transition. Transplantation 2021;105:550-60. [PMID: 32890136 DOI: 10.1097/TP.0000000000003437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
150 Zou Y, Ruan S, Jin L, Chen Z, Han H, Zhang Y, Jian Z, Lin Y, Shi N, Jin H. CDK1, CCNB1, and CCNB2 are Prognostic Biomarkers and Correlated with Immune Infiltration in Hepatocellular Carcinoma. Med Sci Monit 2020;26:e925289. [PMID: 32863381 DOI: 10.12659/MSM.925289] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
151 Henderson JM, Zhang HE, Polak N, Gorrell MD. Hepatocellular carcinoma: Mouse models and the potential roles of proteases. Cancer Lett 2017;387:106-13. [PMID: 27045475 DOI: 10.1016/j.canlet.2016.03.047] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
152 Ding W, Tan Y, Qian Y, Xue W, Wang Y, Jiang P, Xu X. Clinicopathologic and prognostic significance of tumor-associated macrophages in patients with hepatocellular carcinoma: A meta-analysis. PLoS One 2019;14:e0223971. [PMID: 31618252 DOI: 10.1371/journal.pone.0223971] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
153 Wu RS, Lin J, Xing YM, Gao WL, Jiang YX, Chen LX, Zhang XP, Dai ZL. OVOL2 inhibits macrophage M2 polarization by regulating IL-10 transcription, and thus inhibits the tumor metastasis by modulating the tumor microenvironment. Immunol Lett 2021:S0165-2478(21)00083-3. [PMID: 34033850 DOI: 10.1016/j.imlet.2021.05.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
154 Guerra AD, Yeung OWH, Qi X, Kao WJ, Man K. The Anti-Tumor Effects of M1 Macrophage-Loaded Poly (ethylene glycol) and Gelatin-Based Hydrogels on Hepatocellular Carcinoma. Theranostics 2017;7:3732-44. [PMID: 29109772 DOI: 10.7150/thno.20251] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
155 Huang H, Zhang X, Zhang C, Chen H, Ling Q, Zheng S. The time-dependent shift in the hepatic graft and recipient macrophage pool following liver transplantation. Cell Mol Immunol. 2020;17:412-414. [PMID: 31243358 DOI: 10.1038/s41423-019-0253-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
156 Li Q, Ma L, Shen S, Guo Y, Cao Q, Cai X, Feng J, Yan Y, Hu T, Luo S, Zhou L, Peng B, Yang Z, Hua Y. Intestinal dysbacteriosis-induced IL-25 promotes development of HCC via alternative activation of macrophages in tumor microenvironment. J Exp Clin Cancer Res 2019;38:303. [PMID: 31296243 DOI: 10.1186/s13046-019-1271-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
157 Lei X, Zhang M, Guan B, Chen Q, Dong Z, Wang C. Identification of hub genes associated with prognosis, diagnosis, immune infiltration and therapeutic drug in liver cancer by integrated analysis. Hum Genomics 2021;15:39. [PMID: 34187556 DOI: 10.1186/s40246-021-00341-4] [Reference Citation Analysis]
158 Yuan H, Lin Z, Liu Y, Jiang Y, Liu K, Tu M, Yao N, Qu C, Hong J. Intrahepatic cholangiocarcinoma induced M2-polarized tumor-associated macrophages facilitate tumor growth and invasiveness. Cancer Cell Int 2020;20:586. [PMID: 33372604 DOI: 10.1186/s12935-020-01687-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
159 Zhang KW, Wang D, Cai H, Cao MQ, Zhang YY, Zhuang PY, Shen J. IL‑6 plays a crucial role in epithelial‑mesenchymal transition and pro‑metastasis induced by sorafenib in liver cancer. Oncol Rep 2021;45:1105-17. [PMID: 33432366 DOI: 10.3892/or.2021.7926] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
160 Wang D, Xue M, Chen J, Chen H, Liu J, Li Q, Xie Y, Hu Y, Ni Y, Zhou Q. Macrophage-derived implantable vaccine prevents postsurgical tumor recurrence. Biomaterials 2021;278:121161. [PMID: 34601198 DOI: 10.1016/j.biomaterials.2021.121161] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
161 Kono Y, Gogatsubo S, Ohba T, Fujita T. Enhanced macrophage delivery to the colon using magnetic lipoplexes with a magnetic field. Drug Deliv 2019;26:935-43. [PMID: 31530198 DOI: 10.1080/10717544.2019.1662515] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
162 Sivanantham A, Pattarayan D, Rajasekar N, Kannan A, Loganathan L, Bethunaickan R, Mahapatra SK, Palanichamy R, Muthusamy K, Rajasekaran S. Tannic acid prevents macrophage-induced pro-fibrotic response in lung epithelial cells via suppressing TLR4-mediated macrophage polarization. Inflamm Res 2019;68:1011-24. [DOI: 10.1007/s00011-019-01282-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
163 Shao X, Wu B, Cheng L, Li F, Zhan Y, Liu C, Ji L, Min Z, Ke Y, Sun L, Chen H, Cheng Y. Distinct alterations of CD68+CD163+ M2-like macrophages and myeloid-derived suppressor cells in newly diagnosed primary immune thrombocytopenia with or without CR after high-dose dexamethasone treatment. J Transl Med 2018;16:48. [PMID: 29499727 DOI: 10.1186/s12967-018-1424-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
164 Hu B, Yang XB, Sang XT. Molecular subtypes based on immune-related genes predict the prognosis for hepatocellular carcinoma patients. Int Immunopharmacol 2021;90:107164. [PMID: 33172741 DOI: 10.1016/j.intimp.2020.107164] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
165 Yang J, Xing Z. Ligustilide counteracts carcinogenesis and hepatocellular carcinoma cell-evoked macrophage M2 polarization by regulating yes-associated protein-mediated interleukin-6 secretion. Exp Biol Med (Maywood) 2021;246:1928-37. [PMID: 34053234 DOI: 10.1177/15353702211010420] [Reference Citation Analysis]
166 Hastir JF, Delbauve S, Larbanoix L, Germanova D, Goyvaerts C, Allard J, Laurent S, Breckpot K, Beschin A, Guilliams M, Flamand V. Hepatocarcinoma Induces a Tumor Necrosis Factor-Dependent Kupffer Cell Death Pathway That Favors Its Proliferation Upon Partial Hepatectomy. Front Oncol 2020;10:547013. [PMID: 33178579 DOI: 10.3389/fonc.2020.547013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
167 Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021;18:525-43. [PMID: 33850328 DOI: 10.1038/s41575-021-00438-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]