1 |
Wang Z, Liu B, Ji C, Tang L, Huang B, Feng L, Feng Y. Insight into electrochemically boosted trace Co(II)-PMS catalytic process: Sustainable Co(IV)/Co(III)/Co(II) cycling and side reaction blocking. J Hazard Mater 2023;448:130905. [PMID: 36738620 DOI: 10.1016/j.jhazmat.2023.130905] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
2 |
Zhao J, Xiao P. Synergistic and sustainable activation of peroxymonosulfate by nanoscale MWCNTs-CuFe2O4 as a magnetic heterogeneous catalyst for the efficient removal of levofloxacin. Korean J Chem Eng 2023. [DOI: 10.1007/s11814-022-1332-8] [Reference Citation Analysis]
|
3 |
Fang J, Chen Q, Li Z, Mao J, Li Y. The synthesis of single-atom catalysts for heterogeneous catalysis. Chem Commun (Camb) 2023;59:2854-68. [PMID: 36752217 DOI: 10.1039/d2cc06406e] [Reference Citation Analysis]
|
4 |
Yang X, Duan J, Qi J, Li X, Gao J, Liang Y, Li S, Duan T, Liu W. Modulating the electron structure of Co-3d in Co3O4−x/WO2.72 for boosting peroxymonosulfate activation and degradation of sulfamerazine: Roles of high-valence W and rich oxygen vacancies. Journal of Hazardous Materials 2023;445:130576. [DOI: 10.1016/j.jhazmat.2022.130576] [Reference Citation Analysis]
|
5 |
Xu Y, Liu J, Zhao Y, Yi Z. Facile synthesis of NaA zeolite supported Co2Fe1 for highly efficient degradation of Acid Orange 7 by activation of peroxymonosulfate.. [DOI: 10.21203/rs.3.rs-2387214/v1] [Reference Citation Analysis]
|
6 |
Bai Y, Sun X, Dang Y, Yu S, Zhu JJ, Zhou Y. A self-circulating electro-fenton-like process over Fe(3)O(4)-CaO(2) cathode for highly efficient degradation of levofloxacin. Chemosphere 2023;313:137520. [PMID: 36528160 DOI: 10.1016/j.chemosphere.2022.137520] [Reference Citation Analysis]
|
7 |
Wang X, Dai L, He S, Wang Y, Zhang Y. A novel biomineralization regulation strategy to fabricate schwertmannite/graphene oxide composite for effective light-assisted oxidative degradation of sulfathiazole. Separation and Purification Technology 2023. [DOI: 10.1016/j.seppur.2023.123314] [Reference Citation Analysis]
|
8 |
Zhang X, Zhang X, An C, Wang S. Electrochemistry-Enhanced Peroxymonosulfate Activation by CoAl-LDH@biochar for Simultaneous Treatment of Heavy Metals and PAHs. Separation and Purification Technology 2023. [DOI: 10.1016/j.seppur.2023.123341] [Reference Citation Analysis]
|
9 |
Zhang G, Wang Y, Chen M, Xu J, Wang L. ZIF-67-derived carbon@Co3S4/CoSO4/MnO polyhedron to activate peroxymonosulfate for degrading levofloxacin: Synergistic effect and mechanism. Chemical Engineering Journal 2023;451:138976. [DOI: 10.1016/j.cej.2022.138976] [Reference Citation Analysis]
|
10 |
Jandaghian F, Pirbazari AE, Tavakoli O, Asasian-kolur N, Sharifian S. Comparison of the performance of Ag-deposited ZnO and TiO2 nanoparticles in levofloxacin degradation under UV/visible radiation. Journal of Hazardous Materials Advances 2023. [DOI: 10.1016/j.hazadv.2023.100240] [Reference Citation Analysis]
|
11 |
Zhang X, Chen S, Luo H, Tang Z, Liu E, Qin Z, Xu K. Synergy between F-doped g-C3N4 and manganese cobalt oxides (MnxCo3−xO4) mediated peroxymonosulfate activation for efficient degradation of emerging pollutants. Separation and Purification Technology 2023;305:122439. [DOI: 10.1016/j.seppur.2022.122439] [Reference Citation Analysis]
|
12 |
Xu Z, Jiang J, Wang M, Wang J, Tang Y, Li S, Liu J. Enhanced levofloxacin degradation by hierarchical porous Co3O4 with rich oxygen vacancies activating peroxymonosulfate: Performance and mechanism. Separation and Purification Technology 2023;304:122055. [DOI: 10.1016/j.seppur.2022.122055] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
13 |
Li X, Hu Y, Zhang C, Xiao C, Cheng J, Chen Y. Electro-activating of peroxymonosulfate via boron and sulfur co-doped macroporous carbon nanofibers cathode for high-efficient degradation of levofloxacin. Journal of Hazardous Materials 2023;442:130016. [DOI: 10.1016/j.jhazmat.2022.130016] [Reference Citation Analysis]
|
14 |
Zhu S, Li H, Wang L, Cai Z, Wang Q, Shen S, Li X, Deng J. Oxygen vacancies-rich α@δ-MnO2 mediated activation of peroxymonosulfate for the degradation of CIP: The role of electron transfer process on the surface. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141415] [Reference Citation Analysis]
|
15 |
Liu K, Wang L, Fu T, Zhang H, Lu C, Tong Z, Yang Y, Peng Y. Oxygen-functionalized Ti3C2 MXene/exfoliated montmorillonite supported S-scheme BiOBr/Bi2MoO6 heterostructures for efficient photocatalytic quinolone antibiotics degradation. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141271] [Reference Citation Analysis]
|
16 |
Gu J, Wei G, Zhu Y, Lu C, Zhang L, Huang Z, Su Q, Pan S. Photoelectric activation of persulfate with a new type of red mud-based CuFe2O4 particle electrode for the efficient degradation of ciprofloxacin: Preparation, influencing factors and mechanism. Journal of Environmental Chemical Engineering 2022. [DOI: 10.1016/j.jece.2022.109137] [Reference Citation Analysis]
|
17 |
Mo Y, Zhang X. Insights into the mechanism of multiple Cu-doped CoFe2O4 nanocatalyst activated peroxymonosulfate for efficient degradation of Rhodamine B. Journal of Environmental Sciences 2022. [DOI: 10.1016/j.jes.2022.12.003] [Reference Citation Analysis]
|
18 |
Nataraj N, Kubendhiran S, Gan Z, Chen S, Sakthivel R. HMTA-assisted synthesis of praseodymium oxide nanostructures integrated multiwalled carbon nanotubes for efficient levofloxacin electrochemical sensing. Materials Today Chemistry 2022;26:101136. [DOI: 10.1016/j.mtchem.2022.101136] [Reference Citation Analysis]
|
19 |
Xue X, Liao W, Liu D, Zhang X, Huang Y. MgO/Co3O4 composite activated peroxymonosulfate for levofloxacin degradation: Role of surface hydroxyl and oxygen vacancies. Separation and Purification Technology 2022. [DOI: 10.1016/j.seppur.2022.122560] [Reference Citation Analysis]
|
20 |
Gao Z, Zhu J, Zhu Q, Wang C, Cao Y. Spinel ferrites materials for sulfate radical-based advanced oxidation process: A review. Science of The Total Environment 2022;847:157405. [DOI: 10.1016/j.scitotenv.2022.157405] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
21 |
Liu L, Wang J, Li J, Zhang M, Zhang Y, Zhan R, Li J, Wang Z. Insights into the practicability of electrochemical enhanced heterogeneous activation of peroxymonosulfate for the treatment of liquid waste during penicillin G production. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140590] [Reference Citation Analysis]
|
22 |
Zhang Z, Dai Y. Co3O4/C-PC composite derived from pomelo peel-loaded ZIF-67 for activating peroxymonosulfate (PMS) to degrade ciprofloxacin. Journal of Water Process Engineering 2022;49:103043. [DOI: 10.1016/j.jwpe.2022.103043] [Reference Citation Analysis]
|
23 |
Wang G, Hou Y, Yu S, Dang Y, Sun X. Oxygen vacancy enhancing the Co3O4-CeO2 nanosheets as the cathode to activate peroxymonosulfate for degradation of ceftiofur sodium. Journal of Electroanalytical Chemistry 2022;920:116639. [DOI: 10.1016/j.jelechem.2022.116639] [Reference Citation Analysis]
|
24 |
Zhao W, Duan Z, Zheng Z, Li B. Cobalt bismuth oxide with cobalt(II/III) as a new stable peroxymonosulfate activator for effective degradation, mineralization, and detoxification of diclofenac in water. Journal of Cleaner Production 2022;365:132781. [DOI: 10.1016/j.jclepro.2022.132781] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
25 |
Zhao ZY, Xiong J, Wang Y, Cui C. Peroxymonosulfate activation using heterogeneous catalyst Sr2FeO4 coated on SBA-15 for efficient degradation of antibiotic sulfapyridine. Environ Sci Pollut Res Int 2022. [PMID: 35441998 DOI: 10.1007/s11356-022-20277-z] [Reference Citation Analysis]
|
26 |
Sun J, Wu T, Liu Z, Shao B, Liang Q, He Q, Luo S, Pan Y, Zhao C, Huang D. Peroxymonosulfate activation induced by spinel ferrite nanoparticles and their nanocomposites for organic pollutants removal: A review. Journal of Cleaner Production 2022;346:131143. [DOI: 10.1016/j.jclepro.2022.131143] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
|
27 |
Yuan X, Leng Y, Fang C, Gao K, Liu C, Song J, Guo Y. The synergistic effect of PMS activation by LaCoO 3 /g-C 3 N 4 for degradation of tetracycline hydrochloride: performance, mechanism and phytotoxicity evaluation. New J Chem 2022;46:12217-28. [DOI: 10.1039/d2nj01848a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|