1 |
Che H, Wei G, Fan Z, Zhu Y, Zhang L, Wei Z, Huang X, Wei L. Super facile one-step synthesis of sugarcane bagasse derived N-doped porous biochar for adsorption of ciprofloxacin. J Environ Manage 2023;335:117566. [PMID: 36867900 DOI: 10.1016/j.jenvman.2023.117566] [Reference Citation Analysis]
|
2 |
Samy M, Gar Alalm M, Khalil MN, Ezeldean E, El-Dissouky A, Nasr M, Tawfik A. Treatment of hazardous landfill leachate containing 1,4 dioxane by biochar-based photocatalysts in a solar photo-oxidation reactor. J Environ Manage 2023;332:117402. [PMID: 36731416 DOI: 10.1016/j.jenvman.2023.117402] [Reference Citation Analysis]
|
3 |
Liu Y, Zhang Y, Ji M, Li L, Wei T, Zhao J, Chen Z, Li H, Xia J. Rapid room-temperature mechanosynthesis tensile-strained Bi3O4Br for robust photomineralization. Catalysis Communications 2023;177:106638. [DOI: 10.1016/j.catcom.2023.106638] [Reference Citation Analysis]
|
4 |
Han Y, Wang J, Qi D. Low‐temperature synthesis of maize straw biochar‐ZnO nanocomposites for efficient adsorption and photocatalytic degradation of methylene blue. ChemistrySelect 2023;8. [DOI: 10.1002/slct.202300511] [Reference Citation Analysis]
|
5 |
Osman AI, Elgarahy AM, Eltaweil AS, Abd El-monaem EM, El-aqapa HG, Park Y, Hwang Y, Ayati A, Farghali M, Ihara I, Al-muhtaseb AH, Rooney DW, Yap P, Sillanpää M. Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environ Chem Lett 2023. [DOI: 10.1007/s10311-023-01581-7] [Reference Citation Analysis]
|
6 |
Jiang M, Chen Z, Wu Y, Luo J, Zhang A, Chen X, Zeng Y, Wang G, Wang Y, Zhao Y. Novel PbMoO4 loaded N-biochar composites with enhanced adsorption-photocatalytic removal of tetracycline. Optical Materials 2023;137:113540. [DOI: 10.1016/j.optmat.2023.113540] [Reference Citation Analysis]
|
7 |
Ye P, Chen K, Liu X, Zhu Z, Li C, Cheng Y, Yin Y, Xiao K. In situ fabrication of recyclable CuO@MoS2 nanosheet arrays-coated copper mesh for enhanced visible light photocatalytic degradation of tetracycline and microbial inactivation. Separation and Purification Technology 2023. [DOI: 10.1016/j.seppur.2023.123593] [Reference Citation Analysis]
|
8 |
Zhang Y, Shen B, Sajjad Ahmad M, Zhou W, Khalid RR, Ibrahim M, Bokhari A. A three-dimensional active biochar for sintering in steel industry and remove methylene blue by synergistic activation of H3PO4 and ZnCl2. Fuel 2023;336:127079. [DOI: 10.1016/j.fuel.2022.127079] [Reference Citation Analysis]
|
9 |
Wang T, Kumar A, Wang X, Zhang D, Zheng Y, Wang G, Cui Q, Cai J, Zheng J. Construction of activated biochar/Bi(2)WO(6) and /Bi(2)MoO(6) composites to enhance adsorption and photocatalysis performance for efficient application in the removal of pollutants and disinfection. Environ Sci Pollut Res Int 2023;30:30493-513. [PMID: 36434458 DOI: 10.1007/s11356-022-24049-7] [Reference Citation Analysis]
|
10 |
Gumus H, Buyukkidan B. A Simple and Green Preparation Route of Waste Textile Based Photocatalytic Biochars for Pollution Removal. Chemistry Africa 2023. [DOI: 10.1007/s42250-023-00625-3] [Reference Citation Analysis]
|
11 |
Zhou K, Yan L, Zhang R, Zhu X. Easily separated and sustainable cellulose-based adsorbent using a facile two-step modification for highly efficient methylene blue removal. Biomass Conv Bioref 2023. [DOI: 10.1007/s13399-023-03885-8] [Reference Citation Analysis]
|
12 |
Tang J, Ma Y, Zeng C, Yang L, Cui S, Zhi S, Yang F, Ding Y, Zhang K, Zhang Z. Fe-Al bimetallic oxides functionalized-biochar via ball milling for enhanced adsorption of tetracycline in water. Bioresour Technol 2023;369:128385. [PMID: 36423760 DOI: 10.1016/j.biortech.2022.128385] [Reference Citation Analysis]
|
13 |
Luo Y, Wang Y, Hua F, Xue M, Xie X, Xie Y, Yu S, Zhang L, Yin Z, Xie C, Hong Z. Adsorption and photodegradation of reactive red 120 with nickel-iron-layered double hydroxide/biochar composites. Journal of Hazardous Materials 2023;443:130300. [DOI: 10.1016/j.jhazmat.2022.130300] [Reference Citation Analysis]
|
14 |
Nguyen LTT, Le PT, Nguyen TA, Doan NN, No K. Biochar from Cyperus alternifolius Linn.: from a waste of phytoremediation processing to efficient depolluting agent. Environ Sci Pollut Res Int 2023;30:1898-907. [PMID: 35927402 DOI: 10.1007/s11356-022-22356-7] [Reference Citation Analysis]
|
15 |
Yu S, Zhou J, Ren Y, Yang Z, Zhong M, Feng X, Su B, Lei Z. Excellent adsorptive-photocatalytic performance of zinc oxide and biomass derived N, O-contained biochar nanocomposites for dyes and antibiotic removal. Chemical Engineering Journal 2023;451:138959. [DOI: 10.1016/j.cej.2022.138959] [Reference Citation Analysis]
|
16 |
Kusworo TD, Dalanta F, Aryanti N. Synergistic adsorption and photocatalytic process for COD removal from petroleum refinery wastewater using AC/TiO2/CeO2 composite. THE 2ND INTERNATIONAL SYMPOSIUM OF INDONESIAN CHEMICAL ENGINEERING 2021: Enhancing Innovations and Applications of Chemical Engineering for Accelerating Sustainable Development Goals 2023. [DOI: 10.1063/5.0112319] [Reference Citation Analysis]
|
17 |
Rubangakene NO, Elwardany A, Fujii M, Sekiguchi H, Elkady M, Shokry H. Biosorption of Congo Red dye from aqueous solutions using pristine biochar and ZnO biochar from green pea peels. Chemical Engineering Research and Design 2023;189:636-651. [DOI: 10.1016/j.cherd.2022.12.003] [Reference Citation Analysis]
|
18 |
Li W, Cheng L, Liu J, Yang S, Zan S, Zhao G. Recyclable magnetic Fe3O4@C for methylene blue removal under microwave-induced reaction system. Chemosphere 2023;310:136821. [DOI: 10.1016/j.chemosphere.2022.136821] [Reference Citation Analysis]
|
19 |
Naserzade SM, Shahrousvand M, Mohammadi-rovshandeh J, Basati H. Preparation and Optimization of Photocatalytic Polyacrylic Acid/Guar Gum/TiO2 Hydrogels for Absorption and Removing of Methylene Blue Under Visible and UV Irradiation. J Polym Environ 2022. [DOI: 10.1007/s10924-022-02738-1] [Reference Citation Analysis]
|
20 |
Pavlicevic M, Abdelraheem W, Zuverza-Mena N, O'Keefe T, Mukhtar S, Ridge G, Ranciato J, Haynes C, Elmer W, Pignatello J, Pagano L, Caldara M, Marmiroli M, Maestri E, Marmiroli N, White JC. Engineered Nanoparticles, Natural Nanoclay and Biochar, as Carriers of Plant-Growth Promoting Bacteria. Nanomaterials (Basel) 2022;12. [PMID: 36558327 DOI: 10.3390/nano12244474] [Reference Citation Analysis]
|
21 |
Yang H, He T, Wu Y, Luo J, Zhang A, Chen X, Zeng Y, Wang Y, Zhao Y, Wang G. Magnetically recyclable PbMoO4/BC/Fe3O4 composite for tetracycline removal: fabrication, performance, and mechanism. J Mater Sci 2022. [DOI: 10.1007/s10853-022-08020-y] [Reference Citation Analysis]
|
22 |
Li M, Li C, Chunrui Z, Li T, Jiang J, Han Z, Zhang C, Sun H, Dong S. Citric acid-modified MIL-88A(Fe) for enhanced photo-Fenton oxidation in water decontamination. Separation and Purification Technology 2022. [DOI: 10.1016/j.seppur.2022.122945] [Reference Citation Analysis]
|
23 |
Lu Y, Cai Y, Zhang S, Zhuang L, Hu B, Wang S, Chen J, Wang X. Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: mechanism, challenges and perspective. Biochar 2022;4. [DOI: 10.1007/s42773-022-00173-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 33] [Article Influence: 10.0] [Reference Citation Analysis]
|
24 |
Alterkaoui A, Eskikaya O, Gün M, Yabalak E, Arslan H, Dizge N. Production of Waste Tomato Stem Hydrochar (TS-HC) in Subcritical Water Medium and Application in Real Textile Wastewater using Photocatalytic Treatment System. Int J Environ Res 2022;16:110. [DOI: 10.1007/s41742-022-00483-w] [Reference Citation Analysis]
|
25 |
Luo Y, Zheng A, Li J, Han Y, Xue M, Zhang L, Yin Z, Xie C, Chen Z, Ji L, Hong Z, Xie X. Integrated adsorption and photodegradation of tetracycline by bismuth oxycarbonate/biochar nanocomposites. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141228] [Reference Citation Analysis]
|
26 |
Luo Y, Han Y, Hua Y, Xue M, Yu S, Zhang L, Yin Z, Li X, Ma X, Wu H, Liu T, Shen Y, Gao B. Step scheme nickel-aluminium layered double hydroxides/biochar heterostructure photocatalyst for synergistic adsorption and photodegradation of tetracycline. Chemosphere 2022;309:136802. [DOI: 10.1016/j.chemosphere.2022.136802] [Reference Citation Analysis]
|
27 |
Fang Z, Jiang H, Gong J, Zhang H, Hu X, Ouyang K, Guo Y, Hu X, Wang H, Wang P. Removal of Tetracycline Hydrochloride from Water by Visible-Light Photocatalysis Using BiFeO3/BC Materials. Catalysts 2022;12:1461. [DOI: 10.3390/catal12111461] [Reference Citation Analysis]
|
28 |
Zhou K, Yan L, Zhang R, Zhu X. Easily separated and sustainable cellulose-based adsorbent using a facile two-steps modification for highly efficient methylene blue removal.. [DOI: 10.21203/rs.3.rs-2215353/v1] [Reference Citation Analysis]
|
29 |
Liu X, Zhou Z, Wang L, Wang P, Zhang X, Luo K, Li J. A general and programmable preparation of α-MnO2/GO/CS aerogels used for efficient degradation of MB in wastewater. Separation and Purification Technology 2022;301:122034. [DOI: 10.1016/j.seppur.2022.122034] [Reference Citation Analysis]
|
30 |
Chang F, Yang C, Wang X, Zhao S, Wang J, Yang W, Dong F, Zhu G, Kong Y. Mechanical ball-milling preparation and superior photocatalytic NO elimination of Z-scheme Bi12SiO20-based heterojunctions with surface oxygen vacancies. Journal of Cleaner Production 2022. [DOI: 10.1016/j.jclepro.2022.135167] [Reference Citation Analysis]
|
31 |
Leichtweis J, Welter N, Vieira Y, Silvestri S, Carissimi E. Use of the CuFe2O4/biochar composite to remove methylene blue, methyl orange and tartrazine dyes from wastewater using photo-Fenton process. Environ Monit Assess 2022;194:907. [PMID: 36253651 DOI: 10.1007/s10661-022-10633-4] [Reference Citation Analysis]
|
32 |
Luo Y, Zheng A, Xue M, Xie Y, Yu S, Yin Z, Xie C, Hong Z, Tan W, Zou W, Dong L, Gao B. Ball-milled Bi2MoO6/biochar composites for synergistic adsorption and photodegradation of methylene blue: Kinetics and mechanisms. Industrial Crops and Products 2022;186:115229. [DOI: 10.1016/j.indcrop.2022.115229] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
33 |
Zheng Y, Wan Y, Zhang Y, Huang J, Yang Y, Tsang DCW, Wang H, Chen H, Gao B. Recovery of phosphorus from wastewater: A review based on current phosphorous removal technologies. Critical Reviews in Environmental Science and Technology. [DOI: 10.1080/10643389.2022.2128194] [Reference Citation Analysis]
|
34 |
Venkatesh R, Karthi N, Kawin N, Prakash T, Kannan CR, Karthigairajan M, Bobe K, Barik D. Synthesis and Adsorbent Performance of Modified Biochar with Ag/MgO Nanocomposites for Heat Storage Application. Adsorption Science & Technology 2022;2022:1-14. [DOI: 10.1155/2022/7423102] [Reference Citation Analysis]
|
35 |
Suganya R, Revathi A, Sudha D, Sivaprakash V, Kumar ER. Evaluation of structural, optical properties and photocatalytic activity of Ag2O coated ZnO nanoparticles. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-022-09086-9] [Reference Citation Analysis]
|
36 |
Wang T, Zheng J, Cai J, Liu Q, Zhang X. Visible-light-driven photocatalytic degradation of dye and antibiotics by activated biochar composited with K+ doped g-C3N4: Effects, mechanisms, actual wastewater treatment and disinfection. Sci Total Environ 2022;839:155955. [PMID: 35588813 DOI: 10.1016/j.scitotenv.2022.155955] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
|
37 |
Samy M, Gar Alalm M, Ezeldean E, El‐dissouky A, Badr NBE, Al‐muhtaseb A, Alhajeri NS, Osman AI, Tawfik A. Solar‐light‐driven ZnO/biochar treatment of pesticides contaminated wastewater: A practical and computational study. Energy Science & Engineering. [DOI: 10.1002/ese3.1299] [Reference Citation Analysis]
|
38 |
Jiang T, Wang B, Gao B, Cheng N, Feng Q, Chen M, Wang S. Degradation of Organic Pollutants From Water by Biochar-assisted Advanced Oxidation Processes: Mechanisms and Applications. Journal of Hazardous Materials 2022. [DOI: 10.1016/j.jhazmat.2022.130075] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
39 |
Amusat SO, Kebede TG, Nxumalo EN, Dube S, Nindi MM. Incorporating pristine biochar into metal-organic frameworks: Facile green synthesis, characterization, and wastewater remediation. Bioresource Technology Reports 2022;19:101160. [DOI: 10.1016/j.biteb.2022.101160] [Reference Citation Analysis]
|
40 |
Wang T, Stadler FJ, Husein DZ, Zhang D, Cai J, Wang Y, Li M, Qiang Y, Zheng J. Comparative study of enhanced adsorption-photodegradation activity using activated biochar composited with Ag3PO4 or Ag6Si2O7 in wastewater treatment and disinfection: Effects and mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.130235] [Reference Citation Analysis]
|
41 |
Kamal A, Haroon U, Manghwar H, Alamer KH, Alsudays IM, Althobaiti AT, Iqbal A, Akbar M, Farhana, Anar M, Nazish M, Chaudhary HJ, Munis MFH. Biological Applications of Ball-Milled Synthesized Biochar-Zinc Oxide Nanocomposite Using Zea mays L. Molecules 2022;27:5333. [PMID: 36014570 DOI: 10.3390/molecules27165333] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
42 |
Gallego-ramírez C, Chica E, Rubio-clemente A. Coupling of Advanced Oxidation Technologies and Biochar for the Removal of Dyes in Water. Water 2022;14:2531. [DOI: 10.3390/w14162531] [Reference Citation Analysis]
|
43 |
Hadj-otmane C, Ouakouak A, Touahra F, Grabi H, Martín J, Muhammad B. Date palm petiole–derived biochar: effect of pyrolysis temperature and adsorption properties of hazardous cationic dye from water. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-03127-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
44 |
Goswami L, Kushwaha A, Kafle SR, Kim B. Surface Modification of Biochar for Dye Removal from Wastewater. Catalysts 2022;12:817. [DOI: 10.3390/catal12080817] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
45 |
Haghighi Mood S, Pelaez-samaniego MR, Garcia-perez M. Perspectives of Engineered Biochar for Environmental Applications: A Review. Energy Fuels. [DOI: 10.1021/acs.energyfuels.2c01201] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
46 |
Fito J, Kefeni KK, Nkambule TTI. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater. Sci Total Environ 2022;829:154648. [PMID: 35306069 DOI: 10.1016/j.scitotenv.2022.154648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
47 |
Wang T, Cai J, Zheng J, Fang K, Hussain I, Husein DZ. Facile synthesis of activated biochar/BiVO4 heterojunction photocatalyst to enhance visible light efficient degradation for dye and antibiotics: applications and mechanisms. Journal of Materials Research and Technology 2022;19:5017-36. [DOI: 10.1016/j.jmrt.2022.06.177] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
48 |
Xu S, Li D, Guo H, Lu H, Qiu M, Yang J, Shen F. Solvent-Free Synthesis of MgO-Modified Biochars for Phosphorus Removal from Wastewater. IJERPH 2022;19:7770. [DOI: 10.3390/ijerph19137770] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
49 |
He M, Xu Z, Hou D, Gao B, Cao X, Ok YS, Rinklebe J, Bolan NS, Tsang DCW. Waste-derived biochar for water pollution control and sustainable development. Nat Rev Earth Environ. [DOI: 10.1038/s43017-022-00306-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
|
50 |
Yin Z, Zhang Q, Li S, Cagnetta G, Huang J, Deng S, Yu G. Mechanochemical synthesis of catalysts and reagents for water decontamination: Recent advances and perspective. Sci Total Environ 2022;825:153992. [PMID: 35192815 DOI: 10.1016/j.scitotenv.2022.153992] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
51 |
Liu S, Wu D, Hu J, Zhao L, Zhao L, Yang M, Feng Q. Electrospun flexible core-sheath PAN/PU/β-CD@Ag nanofiber membrane decorated with ZnO: enhance the practical ability of semiconductor photocatalyst. Environ Sci Pollut Res Int 2022;29:39638-48. [PMID: 35107732 DOI: 10.1007/s11356-022-18928-2] [Reference Citation Analysis]
|
52 |
Issaka E, Fapohunda FO, Amu-Darko JNO, Yeboah L, Yakubu S, Varjani S, Ali N, Bilal M. Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects. Chemosphere 2022;297:134163. [PMID: 35240157 DOI: 10.1016/j.chemosphere.2022.134163] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
|
53 |
Zeghioud H, Fryda L, Djelal H, Assadi A, Kane A. A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors. Journal of Water Process Engineering 2022;47:102801. [DOI: 10.1016/j.jwpe.2022.102801] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
|
54 |
Yao Y, Jia Y, Zhang Q, Li S, Li G, Cui X, Wu Z. Piezoelectric BaTiO3 with the milling treatment for highly efficient piezocatalysis under vibration. Journal of Alloys and Compounds 2022;905:164234. [DOI: 10.1016/j.jallcom.2022.164234] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
55 |
Hessien M. Microwave-Assisted Hydrothermal Carbonization of Pomegranate Peels into Hydrochar for Environmental Applications. Energies 2022;15:3629. [DOI: 10.3390/en15103629] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
56 |
Ma Y, Zhang T, Zhu P, Cai H, Jin Y, Gao K, Li J. Fabrication of Ag3PO4/polyaniline-activated biochar photocatalyst for efficient triclosan degradation process and toxicity assessment. Sci Total Environ 2022;821:153453. [PMID: 35093359 DOI: 10.1016/j.scitotenv.2022.153453] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
57 |
Sneha Y, Yashas SR, Thinley T, Prabagar Jijoe S, Puttaiah Shivaraju H. Photocatalytic degradation of lomefloxacin antibiotics using hydrothermally synthesized magnesium titanate under visible light-driven energy sources. Environ Sci Pollut Res Int 2022. [PMID: 35524853 DOI: 10.1007/s11356-022-20540-3] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
|
58 |
Hosny M, Fawzy M, Eltaweil AS. Green synthesis of bimetallic Ag/ZnO@Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Sci Rep 2022;12:7316. [PMID: 35513449 DOI: 10.1038/s41598-022-11014-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
|
59 |
Hessien M. Recent progress in zinc oxide nanomaterials and nanocomposites: From synthesis to applications. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.05.082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
60 |
Motawea MM, Hussein MA, Elsenety MM, Ali HM, Seaf El-nasr TA, Gomaa H. Mesoporous hierarchical ZrO2@rice straw-derived SiO2 nanocomposite for rapid adsorption and sunlight-driven photocatalytic degradation of methylene blue. Journal of Photochemistry and Photobiology A: Chemistry 2022;426:113758. [DOI: 10.1016/j.jphotochem.2021.113758] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
|
61 |
Janani B, Al-amri SS, Okla MK, Mohebaldin A, Soufan W, Almunqedhi B, Abdel-maksoud MA, Abdelgawad H, Thomas AM, Raju LL, Khan S. High performing p-n system of CaFe2O4 coupled ZnO for synergetic degradation of Rhodamine B with white-light photocatalysis and bactericidal action. Journal of the Taiwan Institute of Chemical Engineers 2022;133:104271. [DOI: 10.1016/j.jtice.2022.104271] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
62 |
Gonçalves NP, Lourenço MA, Baleuri SR, Bianco S, Jagdale P, Calza P. Biochar waste-based ZnO materials as highly efficient photocatalysts for water treatment. Journal of Environmental Chemical Engineering 2022;10:107256. [DOI: 10.1016/j.jece.2022.107256] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
63 |
Dalanta F, Kusworo TD. Synergistic adsorption and photocatalytic properties of AC/TiO2/CeO2 composite for phenol and ammonia–nitrogen compound degradations from petroleum refinery wastewater. Chemical Engineering Journal 2022;434:134687. [DOI: 10.1016/j.cej.2022.134687] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
|
64 |
Luo Y, Han Y, Xue M, Xie Y, Yin Z, Xie C, Li X, Zheng Y, Huang J, Zhang Y, Yang Y, Gao B. Ball-milled bismuth oxybromide/biochar composites with enhanced removal of reactive red owing to the synergy between adsorption and photodegradation. Journal of Environmental Management 2022;308:114652. [DOI: 10.1016/j.jenvman.2022.114652] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
|
65 |
Perveen S, Nadeem R, Nosheen F, Tongxiang L, Anwar T. Synthesis of biochar-supported zinc oxide and graphene oxide/zinc oxide nanocomposites to remediate tartrazine dye from aqueous solution using fixed-bed column reactor. Appl Nanosci. [DOI: 10.1007/s13204-021-02323-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
66 |
An X, Wang H, Dong C, Jiang P, Wu Z, Yu B. Core-shell P-laden biochar/ZnO/g-C3N4 composite for enhanced photocatalytic degradation of atrazine and improved P slow-release performance. J Colloid Interface Sci 2022;608:2539-48. [PMID: 34774311 DOI: 10.1016/j.jcis.2021.10.166] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
|
67 |
Sutar S, Patil P, Jadhav J. Recent advances in biochar technology for textile dyes wastewater remediation: A review. Environ Res 2022;209:112841. [PMID: 35120893 DOI: 10.1016/j.envres.2022.112841] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
|
68 |
Govindaraju S, Arumugasamy SK, Chellasamy G, Yun K. Zn-MOF decorated bio activated carbon for photocatalytic degradation, oxygen evolution and reduction catalysis. J Hazard Mater 2022;421:126720. [PMID: 34343883 DOI: 10.1016/j.jhazmat.2021.126720] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
|
69 |
Meng W, Ma Z, Shu J, Li B, Su P, Wang R, Chen M, Liu Z, Ai K. Efficient adsorption of methylene blue from aqueous solution by hydrothermal chemical modification phosphorus ore flotation tailings. Separation and Purification Technology 2022;281:119496. [DOI: 10.1016/j.seppur.2021.119496] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
70 |
Dalanta F, Kusworo TD, Aryanti N, Othman NH. Optimization of AC/TiO2/CeO2 composite formulation for petroleum refinery wastewater treatment via simultaneous adsorption-photocatalytic process using D-optimal mixture experimental design. Journal of Environmental Chemical Engineering 2021;9:106517. [DOI: 10.1016/j.jece.2021.106517] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
71 |
Zheng B, Liao J, Ding L, Zhang Y, Zhu W. High efficiency adsorption of uranium in solution with magnesium oxide embedded horse manure-derived biochar. Journal of Environmental Chemical Engineering 2021;9:106897. [DOI: 10.1016/j.jece.2021.106897] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
72 |
Peng H, Li Y, Wen J, Zheng X. Synthesis of ZnFe2O4/B,N-codoped biochar via microwave-assisted pyrolysis for enhancing adsorption-photocatalytic elimination of tetracycline hydrochloride. Industrial Crops and Products 2021;172:114066. [DOI: 10.1016/j.indcrop.2021.114066] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
|
73 |
Zhang WX, Yin Y, He C. P Doping Promotes the Spontaneous Visible-Light-Driven Photocatalytic Water Splitting in Isomorphic Type II GaSe/InS Heterostructure. J Phys Chem Lett 2021;12:7892-900. [PMID: 34382815 DOI: 10.1021/acs.jpclett.1c02040] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
|