BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Magureanu M, Bilea F, Bradu C, Hong D. A review on non-thermal plasma treatment of water contaminated with antibiotics. J Hazard Mater 2021;417:125481. [PMID: 33992019 DOI: 10.1016/j.jhazmat.2021.125481] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Lu Y, Yan H, Han Y, Li P, Shen S. Hierarchical porous phenolic polymer for efficient adsorption of triazine herbicides: Novel preparation strategies and potential applications. Separation and Purification Technology 2022;286:120495. [DOI: 10.1016/j.seppur.2022.120495] [Reference Citation Analysis]
2 Zhao Z, Liang B, Wang M, Yang Q, Su M, Liang S. Microporous carbon derived from hydroxyl functionalized organic network for efficient adsorption of flumequine: Adsorption mechanism and application potentials. Chemical Engineering Journal 2022;427:130943. [DOI: 10.1016/j.cej.2021.130943] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
3 Ren J, Yao Z, Wei Q, Wang R, Wang L, Liu Y, Ren Z, Guo H, Niu Z, Wang J, Zhen Y. Catalytic degradation of chloramphenicol by water falling film dielectric barrier discharge and FeO catalyst. Separation and Purification Technology 2022;290:120826. [DOI: 10.1016/j.seppur.2022.120826] [Reference Citation Analysis]
4 Meropoulis S, Rassias G, Bekiari V, Aggelopoulos C. Structure-Degradation efficiency studies in the remediation of aqueous solutions of dyes using nanosecond-pulsed DBD plasma. Separation and Purification Technology 2021;274:119031. [DOI: 10.1016/j.seppur.2021.119031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
5 Aggelopoulos CA. Recent advances of cold plasma technology for water and soil remediation: A critical review. Chemical Engineering Journal 2022;428:131657. [DOI: 10.1016/j.cej.2021.131657] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 15.0] [Reference Citation Analysis]
6 Zhang H, Xia C, Feng G, Fang J. Hospitals and Laboratories on Paper-Based Sensors: A Mini Review. Sensors (Basel) 2021;21:5998. [PMID: 34577205 DOI: 10.3390/s21185998] [Reference Citation Analysis]
7 Ben Jaballah M, Ambily Rajendran A, Prieto-Simón B, Dridi C. Development of a sustainable nanosensor using green Cu nanoparticles for simultaneous determination of antibiotics in drinking water. Anal Methods 2022. [PMID: 35545944 DOI: 10.1039/d2ay00419d] [Reference Citation Analysis]
8 Kusumandari K, Saraswati TE, Prakoso AD. The in situ DBD plasma for Remazol dyes-based textile wastewater remediation. Int J Environ Sci Technol . [DOI: 10.1007/s13762-022-04211-x] [Reference Citation Analysis]
9 Guo H, Wang Y, Liao L, Li Z, Pan S, Puyang C, Su Y, Zhang Y, Wang T, Ren J, Li J. Review on remediation of organic-contaminated soil by discharge plasma: Plasma types, impact factors, plasma-assisted catalysis, and indexes for remediation. Chemical Engineering Journal 2022;436:135239. [DOI: 10.1016/j.cej.2022.135239] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
10 Shang K, Morent R, Wang N, Wang Y, Peng B, Jiang N, Lu N, Li J. Degradation of sulfamethoxazole (SMX) by water falling film DBD Plasma/Persulfate: Reactive species identification and their role in SMX degradation. Chemical Engineering Journal 2022;431:133916. [DOI: 10.1016/j.cej.2021.133916] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 13.0] [Reference Citation Analysis]
11 Ma Y, Wang Z, Li J, Song B, Liu S. Electrochemical-assisted ultraviolet light coupled peroxodisulfate system to degrade ciprofloxacin in water: Kinetics, mechanism and pathways. Chemosphere 2022;295:133838. [PMID: 35143863 DOI: 10.1016/j.chemosphere.2022.133838] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Fang C, Wang S, Xu H, Huang Q. Degradation of tetracycline by atmospheric-pressure non-thermal plasma: Enhanced performance, degradation mechanism, and toxicity evaluation. Sci Total Environ 2021;:152455. [PMID: 34952084 DOI: 10.1016/j.scitotenv.2021.152455] [Reference Citation Analysis]
13 Liu X, Cheng C, Xu Z, Hu S, Shen J, Lan Y, Chu PK. Degradation of tetracycline in water by gas–liquid plasma in conjunction with rGO-TiO 2 nanocomposite. Plasma Sci Technol 2021;23:115503. [DOI: 10.1088/2058-6272/ac1323] [Reference Citation Analysis]
14 Azizi D, Arif A, Blair D, Dionne J, Filion Y, Ouarda Y, Pazmino AG, Pulicharla R, Rilstone V, Tiwari B, Vignale L, Brar SK, Champagne P, Drogui P, Langlois VS, Blais JF. A comprehensive review on current technologies for removal of endocrine disrupting chemicals from wastewaters. Environ Res 2021;:112196. [PMID: 34634314 DOI: 10.1016/j.envres.2021.112196] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]