BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Islam MM, Hameed HMA, Mugweru J, Chhotaray C, Wang C, Tan Y, Liu J, Li X, Tan S, Ojima I, Yew WW, Nuermberger E, Lamichhane G, Zhang T. Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J Genet Genomics 2017;44:21-37. [PMID: 28117224 DOI: 10.1016/j.jgg.2016.10.002] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Shi Q, Wang J, Yang Z, Liu Y. CircAGFG1modulates autophagy and apoptosis of macrophages infected by Mycobacterium tuberculosis via the Notch signaling pathway. Ann Transl Med 2020;8:645. [PMID: 32566582 DOI: 10.21037/atm.2020-20-3048] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Islam MM, Tan Y, Hameed HMA, Chhotaray C, Liu Z, Liu Y, Lu Z, Wang S, Cai X, Gao Y, Cai X, Guo L, Li X, Tan S, Yew WW, Zhong N, Liu J, Zhang T. Phenotypic and Genotypic Characterization of Streptomycin-Resistant Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates in Southern China. Microb Drug Resist 2020;26:766-75. [PMID: 31976809 DOI: 10.1089/mdr.2019.0245] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
3 Gobis K, Szczesio M, Olczak A, Korona-głowniak I, Augustynowicz-kopeć E, Mazernt-politowicz I, Ziembicka D, Główka ML. Differences in the Structure and Antimicrobial Activity of Hydrazones Derived from Methyl 4-Phenylpicolinimidate. Materials 2022;15:3085. [DOI: 10.3390/ma15093085] [Reference Citation Analysis]
4 Su Q, Kuang W, Hao W, Liang J, Wu L, Tang C, Wang Y, Liu T. Antituberculosis Drugs (Rifampicin and Isoniazid) Induce Liver Injury by Regulating NLRP3 Inflammasomes. Mediators Inflamm 2021;2021:8086253. [PMID: 33688304 DOI: 10.1155/2021/8086253] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Burian J, Thompson CJ. Regulatory genes coordinating antibiotic-induced changes in promoter activity and early transcriptional termination of the mycobacterial intrinsic resistance gene whiB7: Regulatory genes that alter whiB7 transcription. Molecular Microbiology 2018;107:402-15. [DOI: 10.1111/mmi.13890] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
6 Pi J, Shen L, Shen H, Yang E, Wang W, Wang R, Huang D, Lee BS, Hu C, Chen C, Jin H, Cai J, Zeng G, Chen ZW. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M.tuberculosis killing efficiency. Mater Sci Eng C Mater Biol Appl 2019;103:109777. [PMID: 31349400 DOI: 10.1016/j.msec.2019.109777] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
7 Iacobino A, Fattorini L, Giannoni F. Drug-Resistant Tuberculosis 2020: Where We Stand. Applied Sciences 2020;10:2153. [DOI: 10.3390/app10062153] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
8 Yang Y, Wu J. Significance of the Differential Peptidome in Multidrug-Resistant Tuberculosis. Biomed Res Int 2019;2019:5653424. [PMID: 30792993 DOI: 10.1155/2019/5653424] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Dube PS, Legoabe LJ, Jordaan A, Jesumoroti OJ, Tshiwawa T, Warner DF, Beteck RM. Easily accessed nitroquinolones exhibiting potent and selective anti-tubercular activity. Eur J Med Chem 2021;213:113207. [PMID: 33524688 DOI: 10.1016/j.ejmech.2021.113207] [Reference Citation Analysis]
10 Islam MM, Tan Y, Hameed HMA, Liu Z, Chhotaray C, Liu Y, Lu Z, Cai X, Tang Y, Gao Y, Surineni G, Li X, Tan S, Guo L, Cai X, Yew WW, Liu J, Zhong N, Zhang T. Detection of novel mutations associated with independent resistance and cross-resistance to isoniazid and prothionamide in Mycobacterium tuberculosis clinical isolates. Clin Microbiol Infect 2019;25:1041.e1-7. [PMID: 30583053 DOI: 10.1016/j.cmi.2018.12.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
11 Dehyab AS, Bakar MFA, AlOmar MK, Sabran SF. A review of medicinal plant of Middle East and North Africa (MENA) region as source in tuberculosis drug discovery. Saudi J Biol Sci 2020;27:2457-78. [PMID: 32884430 DOI: 10.1016/j.sjbs.2020.07.007] [Reference Citation Analysis]
12 Bhat ZS, Rather MA, Ul Lah H, Hussain A, Maqbool M, Yousuf SK, Jabeen Z, Wani MA, Ahmad Z. In vitro bactericidal activity of 3-cinnamoyl-4-hydroxy-6-methyl-2-pyrone (CHP) against drug-susceptible, drug-resistant and drug-tolerant isolates of Mycobacterium tuberculosis. J Glob Antimicrob Resist 2020;22:57-62. [PMID: 31809940 DOI: 10.1016/j.jgar.2019.11.018] [Reference Citation Analysis]
13 Caleffi-Ferracioli KR, Cardoso RF, de Souza JV, Murase LS, Canezin PH, Scodro RB, Ld Siqueira V, Pavan FR. Modulatory effects of verapamil in rifampicin activity against Mycobacterium tuberculosis. Future Microbiol 2019;14:185-94. [PMID: 30648892 DOI: 10.2217/fmb-2018-0277] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
14 Lai LY, Hsu LY, Weng SH, Chung SE, Ke HE, Lin TL, Hsieh PF, Lee WT, Tsai HY, Lin WH, Jou R, Wang JT. A Glutamine Insertion at Codon 432 of RpoB Confers Rifampicin Resistance in Mycobacterium tuberculosis. Front Microbiol 2020;11:583194. [PMID: 33193223 DOI: 10.3389/fmicb.2020.583194] [Reference Citation Analysis]
15 Briffotaux J, Liu S, Gicquel B. Genome-Wide Transcriptional Responses of Mycobacterium to Antibiotics. Front Microbiol 2019;10:249. [PMID: 30842759 DOI: 10.3389/fmicb.2019.00249] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
16 Guo Y, Cao X, Yang J, Wu X, Liu Y, Wan B, Hu L, Wang H, Yu F. Rifampin-resistance-associated mutations in the rifampin-resistance-determining region of the rpoB gene of Mycobacterium tuberculosis clinical isolates in Shanghai, PR China. J Med Microbiol 2021;70. [PMID: 33507146 DOI: 10.1099/jmm.0.001317] [Reference Citation Analysis]
17 Chetty S, Ramesh M, Singh-Pillay A, Soliman ME. Recent advancements in the development of anti-tuberculosis drugs. Bioorg Med Chem Lett 2017;27:370-86. [PMID: 28017531 DOI: 10.1016/j.bmcl.2016.11.084] [Cited by in Crossref: 67] [Cited by in F6Publishing: 49] [Article Influence: 11.2] [Reference Citation Analysis]
18 Wlodarchak N, Teachout N, Beczkiewicz J, Procknow R, Schaenzer AJ, Satyshur K, Pavelka M, Zuercher W, Drewry D, Sauer JD, Striker R. In Silico Screen and Structural Analysis Identifies Bacterial Kinase Inhibitors which Act with β-Lactams To Inhibit Mycobacterial Growth. Mol Pharm 2018;15:5410-26. [PMID: 30285456 DOI: 10.1021/acs.molpharmaceut.8b00905] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
19 Hameed HMA, Islam MM, Chhotaray C, Wang C, Liu Y, Tan Y, Li X, Tan S, Delorme V, Yew WW, Liu J, Zhang T. Molecular Targets Related Drug Resistance Mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis Strains. Front Cell Infect Microbiol 2018;8:114. [PMID: 29755957 DOI: 10.3389/fcimb.2018.00114] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 12.0] [Reference Citation Analysis]
20 Jadhavar PS, Patel KI, Dhameliya TM, Saha N, Vaja MD, Krishna VS, Sriram D, Chakraborti AK. Benzimidazoquinazolines as new potent anti-TB chemotypes: Design, synthesis, and biological evaluation. Bioorganic Chemistry 2020;99:103774. [DOI: 10.1016/j.bioorg.2020.103774] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
21 Hsu LY, Lai LY, Hsieh PF, Lin TL, Lin WH, Tasi HY, Lee WT, Jou R, Wang JT. Two Novel katG Mutations Conferring Isoniazid Resistance in Mycobacterium tuberculosis. Front Microbiol 2020;11:1644. [PMID: 32760384 DOI: 10.3389/fmicb.2020.01644] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Tan YZ, Zhang L, Rodrigues J, Zheng RB, Giacometti SI, Rosário AL, Kloss B, Dandey VP, Wei H, Brunton R, Raczkowski AM, Athayde D, Catalão MJ, Pimentel M, Clarke OB, Lowary TL, Archer M, Niederweis M, Potter CS, Carragher B, Mancia F. Cryo-EM Structures and Regulation of Arabinofuranosyltransferase AftD from Mycobacteria. Mol Cell 2020;78:683-699.e11. [PMID: 32386575 DOI: 10.1016/j.molcel.2020.04.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
23 du Plessis N, Kotze LA, Leukes V, Walzl G. Translational Potential of Therapeutics Targeting Regulatory Myeloid Cells in Tuberculosis. Front Cell Infect Microbiol 2018;8:332. [PMID: 30298121 DOI: 10.3389/fcimb.2018.00332] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
24 Wang R, Li K, Yu J, Deng J, Chen Y. Mutations of folC cause increased susceptibility to sulfamethoxazole in Mycobacterium tuberculosis. Sci Rep 2021;11:1352. [PMID: 33446754 DOI: 10.1038/s41598-020-80213-4] [Reference Citation Analysis]
25 Hameed HA, Tan Y, Islam MM, Lu Z, Chhotaray C, Wang S, Liu Z, Fang C, Tan S, Yew WW, Zhong N, Liu J, Zhang T. Detection of Novel Gene Mutations Associated with Pyrazinamide Resistance in Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates in Southern China. Infect Drug Resist 2020;13:217-27. [PMID: 32158237 DOI: 10.2147/IDR.S230774] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
26 Hegeto LA, Caleffi-ferracioli KR, Perez de Souza J, Almeida ALD, Nakamura de Vasconcelos SS, Barros ILE, Canezin PH, Campanerut-sá PAZ, Scodro RBDL, Siqueira VLD, Teixeira JJV, Cardoso RF. Promising Antituberculosis Activity of Piperine Combined with Antimicrobials: A Systematic Review. Microbial Drug Resistance 2019;25:120-6. [DOI: 10.1089/mdr.2018.0107] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
27 Chikhale RV, Barmade MA, Murumkar PR, Yadav MR. Overview of the Development of DprE1 Inhibitors for Combating the Menace of Tuberculosis. J Med Chem 2018;61:8563-93. [PMID: 29851474 DOI: 10.1021/acs.jmedchem.8b00281] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
28 Islam MM, Tan Y, Hameed HMA, Liu Y, Chhotaray C, Cai X, Liu Z, Lu Z, Wang S, Cai X, Su B, Li X, Tan S, Liu J, Zhang T. Prevalence and molecular characterization of amikacin resistance among Mycobacterium tuberculosis clinical isolates from southern China. J Glob Antimicrob Resist 2020;22:290-5. [PMID: 32142951 DOI: 10.1016/j.jgar.2020.02.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Hegeto LA, Caleffi-Ferracioli KR, Nakamura-Vasconcelos SS, Almeida AL, Baldin VP, Nakamura CV, Siqueira VLD, Scodro RBL, Cardoso RF. In vitro combinatory activity of piperine and anti-tuberculosis drugs in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2018;111:35-40. [PMID: 30029912 DOI: 10.1016/j.tube.2018.05.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
30 Chhotaray C, Tan Y, Mugweru J, Islam MM, Adnan Hameed HM, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J, Zhang T. Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J Genet Genomics 2018:S1673-8527(18)30114-0. [PMID: 29941353 DOI: 10.1016/j.jgg.2018.06.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
31 Zhao LL, Huang MX, Xiao TY, Liu HC, Li MC, Zhao XQ, Liu ZG, Jiang Y, Wan KL. Prevalence, risk and genetic characteristics of drug-resistant tuberculosis in a tertiary care tuberculosis hospital in China. Infect Drug Resist 2019;12:2457-65. [PMID: 31496759 DOI: 10.2147/IDR.S209971] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
32 Surineni G, Gao Y, Hussain M, Liu Z, Lu Z, Chhotaray C, Islam MM, Hameed HMA, Zhang T. Design, synthesis, and in vitro biological evaluation of novel benzimidazole tethered allylidenehydrazinylmethylthiazole derivatives as potent inhibitors of Mycobacterium tuberculosis. Medchemcomm 2019;10:49-60. [PMID: 30774854 DOI: 10.1039/c8md00389k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
33 Hameed HMA, Tan Y, Islam MM, Guo L, Chhotaray C, Wang S, Liu Z, Gao Y, Tan S, Yew WW, Zhong N, Liu J, Zhang T. Phenotypic and genotypic characterization of levofloxacin- and moxifloxacin-resistant Mycobacterium tuberculosis clinical isolates in southern China. J Thorac Dis 2019;11:4613-25. [PMID: 31903250 DOI: 10.21037/jtd.2019.11.03] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
34 [DOI: 10.1101/2019.12.22.885152] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Feng Y, Xie Z, Jiang X, Li Z, Shen Y, Wang B, Liu J. The Applications of Promoter-gene-Engineered Biosensors. Sensors (Basel) 2018;18:E2823. [PMID: 30150540 DOI: 10.3390/s18092823] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
36 Mazlun MH, Sabran SF, Mohamed M, Abu Bakar MF, Abdullah Z. Phenolic Compounds as Promising Drug Candidates in Tuberculosis Therapy. Molecules 2019;24:E2449. [PMID: 31277371 DOI: 10.3390/molecules24132449] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
37 Kovalishyn V, Grouleff J, Semenyuta I, Sinenko VO, Slivchuk SR, Hodyna D, Brovarets V, Blagodatny V, Poda G, Tetko IV, Metelytsia L. Rational design of isonicotinic acid hydrazide derivatives with antitubercular activity: Machine learning, molecular docking, synthesis and biological testing. Chem Biol Drug Des 2018;92:1272-8. [PMID: 29536635 DOI: 10.1111/cbdd.13188] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
38 Hakeem S, Singh I, Sharma P, Uppal A, Khajuria Y, Verma V, Uversky VN, Chandra R. Molecular dynamics analysis of the effects of GTP, GDP and benzimidazole derivative on structural dynamics of a cell division protein FtsZ from Mycobacterium tuberculosis. J Biomol Struct Dyn 2019;37:4361-73. [PMID: 30466358 DOI: 10.1080/07391102.2018.1548979] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]