BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xiao Y, Lyu H, Yang C, Zhao B, Wang L, Tang J. Graphitic carbon nitride/biochar composite synthesized by a facile ball-milling method for the adsorption and photocatalytic degradation of enrofloxacin. J Environ Sci (China) 2021;103:93-107. [PMID: 33743922 DOI: 10.1016/j.jes.2020.10.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang H, Yu Y, Li Y, Lin L, Zhang C, Zhang W, Wang L, Niu L. A novel BC/g-C(3)N(4) porous hydrogel carrier used in intimately coupled photocatalysis and biodegradation system for efficient removal of tetracycline hydrochloride in water. Chemosphere 2023;317:137888. [PMID: 36657568 DOI: 10.1016/j.chemosphere.2023.137888] [Reference Citation Analysis]
2 Fito J, Abewaa M, Nkambule T. Magnetite-impregnated biochar of parthenium hysterophorus for adsorption of Cr(VI) from tannery industrial wastewater. Appl Water Sci 2023;13:78. [DOI: 10.1007/s13201-023-01880-y] [Reference Citation Analysis]
3 Jiang M, Chen Z, Wu Y, Luo J, Zhang A, Chen X, Zeng Y, Wang G, Wang Y, Zhao Y. Novel PbMoO4 loaded N-biochar composites with enhanced adsorption-photocatalytic removal of tetracycline. Optical Materials 2023;137:113540. [DOI: 10.1016/j.optmat.2023.113540] [Reference Citation Analysis]
4 Xiao L, Zhang S, Chen B, Wu P, Feng N, Deng F, Wang Z. Visible-light photocatalysis degradation of enrofloxacin by crawfish shell biochar combined with g-C3N4: Effects and mechanisms. Journal of Environmental Chemical Engineering 2023. [DOI: 10.1016/j.jece.2023.109693] [Reference Citation Analysis]
5 Sime T, Fito J, Nkambule TTI, Temesgen Y, Sergawie A. Adsorption of Congo Red from Textile Wastewater Using Activated Carbon Developed from Corn Cobs: The Studies of Isotherms and Kinetics. Chemistry Africa 2023. [DOI: 10.1007/s42250-022-00583-2] [Reference Citation Analysis]
6 Fito J, Ebrahim O, Nkambule TTI. The Application Mn-Ni Ferrite Nanocomposite for Adsorption of Chromium from Textile Industrial Wastewater. Water Air Soil Pollut 2023;234:37. [DOI: 10.1007/s11270-022-06058-x] [Reference Citation Analysis]
7 Li T, Liu J, Shi F, Zhang H, Zhang H, Ma C, Wasim M. A novel S-type CsxWO3/BiOI heterojunction photocatalyst constructed in graphene aerogel with high degradation efficiency for enrofloxacin: Degradation mechanism and DFT calculation. Journal of Environmental Chemical Engineering 2023. [DOI: 10.1016/j.jece.2023.109301] [Reference Citation Analysis]
8 Lu Y, Cai Y, Zhang S, Zhuang L, Hu B, Wang S, Chen J, Wang X. Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: mechanism, challenges and perspective. Biochar 2022;4. [DOI: 10.1007/s42773-022-00173-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 33] [Article Influence: 10.0] [Reference Citation Analysis]
9 Xu H, Zhang T, Wang D, Cai D, Chen S, Wang H, Shu S, Zhu Y. Degradation of tetracycline using persulfate activated by a honeycomb structured S-doped g-C3N4/biochar under visible light. Separation and Purification Technology 2022;300:121833. [DOI: 10.1016/j.seppur.2022.121833] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Gupta AD, Singh H, Varjani S, Awasthi MK, Giri BS, Pandey A. A critical review on biochar-based catalysts for the abatement of toxic pollutants from water via advanced oxidation processes (AOPs). Science of The Total Environment 2022;849:157831. [DOI: 10.1016/j.scitotenv.2022.157831] [Reference Citation Analysis]
11 Chen L, Hu J, Han Q, Zhang J, Zhou Z, Zhou N, Zhou H, Lu X, Mi B, Wu F. Resolving the enhancement effect of microwave-assisted pyrolysis on biochar redox properties from the structure-activity relationship. Journal of Analytical and Applied Pyrolysis 2022;167:105706. [DOI: 10.1016/j.jaap.2022.105706] [Reference Citation Analysis]
12 Ke J, Ge Y, Yang Q, Liu Y, Show P, Guo R, Chen J. Degradation of sulfamethazine using sludge-derived photocatalysts from dyeing industry and livestock farm: preparation and mechanism. Journal of Hazardous Materials 2022;440:129837. [DOI: 10.1016/j.jhazmat.2022.129837] [Reference Citation Analysis]
13 Wang T, Zheng J, Cai J, Liu Q, Zhang X. Visible-light-driven photocatalytic degradation of dye and antibiotics by activated biochar composited with K+ doped g-C3N4: Effects, mechanisms, actual wastewater treatment and disinfection. Sci Total Environ 2022;839:155955. [PMID: 35588813 DOI: 10.1016/j.scitotenv.2022.155955] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
14 Dong Y, Du W, Gao X, Guo M. A TiO2/CN-decorated wood carbon for efficient clean water production via simultaneous decontamination and evaporation. Journal of Cleaner Production 2022;365:132827. [DOI: 10.1016/j.jclepro.2022.132827] [Reference Citation Analysis]
15 Jiang T, Wang B, Gao B, Cheng N, Feng Q, Chen M, Wang S. Degradation of Organic Pollutants From Water by Biochar-assisted Advanced Oxidation Processes: Mechanisms and Applications. Journal of Hazardous Materials 2022. [DOI: 10.1016/j.jhazmat.2022.130075] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Adhikari S, Timms W, Mahmud MAP. Optimising water holding capacity and hydrophobicity of biochar for soil amendment - A review. Sci Total Environ 2022;851:158043. [PMID: 35985584 DOI: 10.1016/j.scitotenv.2022.158043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Fito J, Kefeni KK, Nkambule TTI. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater. Sci Total Environ 2022;829:154648. [PMID: 35306069 DOI: 10.1016/j.scitotenv.2022.154648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 Tang Y, Hu X, Xu Z, Chen X, Zeng Y, Wang G, Wang Y, Liu G, Zhao Y, Wu Y. The effects of g-C3N4/biochar and g-C3N4 on bacterial community in riverbed sediment. Environ Sci Pollut Res. [DOI: 10.1007/s11356-022-21884-6] [Reference Citation Analysis]
19 Zhu N, Yan Q, He Y, Wang X, Wei Z, Liang D, Yue H, Yun Y, Li G, Sang N. Insights into the removal of polystyrene nanoplastics using the contaminated corncob-derived mesoporous biochar from mining area. Journal of Hazardous Materials 2022;433:128756. [DOI: 10.1016/j.jhazmat.2022.128756] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Rahman N, Raheem A. Fabrication of graphene oxide/inulin impregnated with ZnO nanoparticles for efficient removal of enrofloxacin from water: Taguchi-optimized experimental analysis. J Environ Manage 2022;318:115525. [PMID: 35724574 DOI: 10.1016/j.jenvman.2022.115525] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Zeghioud H, Fryda L, Djelal H, Assadi A, Kane A. A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors. Journal of Water Process Engineering 2022;47:102801. [DOI: 10.1016/j.jwpe.2022.102801] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
22 Pang YL, Koe AZY, Chan YY, Lim S, Chong WC. Enhanced Sonocatalytic Performance of Non-Metal Graphitic Carbon Nitride (g-C3N4)/Coconut Shell Husk Derived-Carbon Composite. Sustainability 2022;14:3244. [DOI: 10.3390/su14063244] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Chen N, Pilla S. A comprehensive review on transforming lignocellulosic materials into biocarbon and its utilization for composites applications. Composites Part C: Open Access 2022;7:100225. [DOI: 10.1016/j.jcomc.2021.100225] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Juela DM. Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Separation and Purification Technology 2022;284:120286. [DOI: 10.1016/j.seppur.2021.120286] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
25 Guo H, Zhang X, Shen F. Producing Value-added Products from Organic Solid Wastes with Mechanochemical Processes. Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste 2022. [DOI: 10.1007/978-981-16-6162-4_10] [Reference Citation Analysis]
26 Moges A, Nkambule TTI, Fito J. The application of GO-Fe3O4 nanocomposite for chromium adsorption from tannery industry wastewater. J Environ Manage 2021;305:114369. [PMID: 34972044 DOI: 10.1016/j.jenvman.2021.114369] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
27 Ma ZP, Zhang L, Ma X, Zhang YH, Shi FN. Design of Z-scheme g-C3N4/BC/Bi25FeO40 photocatalyst with unique electron transfer channels for efficient degradation of tetracycline hydrochloride waste. Chemosphere 2021;289:133262. [PMID: 34906528 DOI: 10.1016/j.chemosphere.2021.133262] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
28 Diao Z, Jin J, Zou M, Liu H, Qin J, Zhou X, Qian W, Guo P, Kong L, Chu W. Simultaneous degradation of amoxicillin and norfloxacin by TiO2@nZVI composites coupling with persulfate: Synergistic effect, products and mechanism. Separation and Purification Technology 2021;278:119620. [DOI: 10.1016/j.seppur.2021.119620] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
29 Ahmed S, Khan FSA, Mubarak NM, Khalid M, Tan YH, Mazari SA, Karri RR, Abdullah EC. Emerging pollutants and their removal using visible-light responsive photocatalysis – A comprehensive review. Journal of Environmental Chemical Engineering 2021;9:106643. [DOI: 10.1016/j.jece.2021.106643] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 10.5] [Reference Citation Analysis]
30 Peng H, Li Y, Wen J, Zheng X. Synthesis of ZnFe2O4/B,N-codoped biochar via microwave-assisted pyrolysis for enhancing adsorption-photocatalytic elimination of tetracycline hydrochloride. Industrial Crops and Products 2021;172:114066. [DOI: 10.1016/j.indcrop.2021.114066] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
31 Lin M, Li F, Cheng W, Rong X, Wang W. Facile preparation of a novel modified biochar-based supramolecular self-assembled g-C3N4 for enhanced visible light photocatalytic degradation of phenanthrene. Chemosphere 2021;:132620. [PMID: 34688717 DOI: 10.1016/j.chemosphere.2021.132620] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
32 Amusat SO, Kebede TG, Dube S, Nindi MM. Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. Journal of Water Process Engineering 2021;41:101993. [DOI: 10.1016/j.jwpe.2021.101993] [Cited by in Crossref: 33] [Cited by in F6Publishing: 40] [Article Influence: 16.5] [Reference Citation Analysis]
33 Cui Y, Jiang Z, Xu C, Zhu M, Li W, Wang C. Preparation, filtration, and photocatalytic properties of PAN@g-C3N4 fibrous membranes by electrospinning. RSC Adv 2021;11:19579-86. [PMID: 35479234 DOI: 10.1039/d1ra03234h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Qiu M, Hu B, Chen Z, Yang H, Zhuang L, Wang X. Challenges of organic pollutant photocatalysis by biochar-based catalysts. Biochar 2021;3:117-23. [DOI: 10.1007/s42773-021-00098-y] [Cited by in Crossref: 99] [Cited by in F6Publishing: 107] [Article Influence: 49.5] [Reference Citation Analysis]