BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fantke P, Arnot JA, Doucette WJ. Improving plant bioaccumulation science through consistent reporting of experimental data. Journal of Environmental Management 2016;181:374-84. [DOI: 10.1016/j.jenvman.2016.06.065] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Nath R, Komala G, Fantke P, Mukherjee S. Dissipation kinetics, residue modeling and human intake of endosulfan applied to okra (Abelmoschus esculentus). Sci Total Environ 2022;835:155591. [PMID: 35490803 DOI: 10.1016/j.scitotenv.2022.155591] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Li Z. Modeling plant uptake of organic contaminants by root vegetables: The role of diffusion, xylem, and phloem uptake routes. J Hazard Mater 2022;434:128911. [PMID: 35460996 DOI: 10.1016/j.jhazmat.2022.128911] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Li Z, Xiong J, Fantke P. Screening of pesticide distributions in foods of animal origin: a matrix-based approach for biotransfer factor modeling of grazing mammals. Environ Sci Process Impacts 2022;24:609-24. [PMID: 35356957 DOI: 10.1039/d1em00454a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Santos DD, Santos OSL, Domingos M, Rinaldi MCS. Pah levels in the soil-litter-vegetation-atmosphere system of Atlantic Forest remnants in Southeast Brazil. Environ Monit Assess 2022;194:293. [PMID: 35332388 DOI: 10.1007/s10661-022-09946-1] [Reference Citation Analysis]
5 Li Z, Fantke P. Toward harmonizing global pesticide regulations for surface freshwaters in support of protecting human health. J Environ Manage 2022;301:113909. [PMID: 34624580 DOI: 10.1016/j.jenvman.2021.113909] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
6 Sun H, Li Y, Wang P, Yang R, Pei Z, Zhang Q, Jiang G. First report on hydroxylated and methoxylated polybrominated diphenyl ethers in terrestrial environment from the Arctic and Antarctica. J Hazard Mater 2021;:127644. [PMID: 34749998 DOI: 10.1016/j.jhazmat.2021.127644] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Li Z, Niu S. Modeling pesticides in global surface soils: Evaluating spatiotemporal patterns for USEtox-based steady-state concentrations. Science of The Total Environment 2021;791:148412. [DOI: 10.1016/j.scitotenv.2021.148412] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
8 Li Z. A disease-specific screening-level modeling approach for assessing the cancer risks of pesticide mixtures. Chemosphere 2021;286:131811. [PMID: 34365169 DOI: 10.1016/j.chemosphere.2021.131811] [Reference Citation Analysis]
9 Li Z. Approximate Modeling of the Uptake of Pesticides by Grass for Grazing Risk Assessment and Pasture Management. ACS Agric Sci Technol 2021;1:338-46. [DOI: 10.1021/acsagscitech.1c00036] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
10 Lahive E, Schultz CL, Van Gestel CAM, Robinson A, Horton AA, Spurgeon DJ, Svendsen C, Busquets-Fité M, Matzke M, Green Etxabe A. A Kinetic Approach for Assessing the Uptake of Ag from Pristine and Sulfidized Ag Nanomaterials to Plants. Environ Toxicol Chem 2021;40:1861-72. [PMID: 33661534 DOI: 10.1002/etc.5031] [Reference Citation Analysis]
11 Xiao S, Gong Y, Li Z, Fantke P. Improving Pesticide Uptake Modeling into Potatoes: Considering Tuber Growth Dynamics. J Agric Food Chem 2021;69:3607-16. [DOI: 10.1021/acs.jafc.1c00151] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
12 Li Z. Spatiotemporal pattern models for bioaccumulation of pesticides in common herbaceous and woody plants. Journal of Environmental Management 2020;276:111334. [DOI: 10.1016/j.jenvman.2020.111334] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
13 Li Z. Spatiotemporal pattern models for bioaccumulation of pesticides in herbivores: An approximation theory for North American white-tailed deer. Science of The Total Environment 2020;737:140271. [DOI: 10.1016/j.scitotenv.2020.140271] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
14 Horská T, Kocourek F, Stará J, Holý K, Mráz P, Krátký F, Kocourek V, Hajšlová J. Evaluation of Pesticide Residue Dynamics in Lettuce, Onion, Leek, Carrot and Parsley. Foods 2020;9:E680. [PMID: 32466205 DOI: 10.3390/foods9050680] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
15 Abdelbagi AO, Ismail REA, Ishag AESA, Hammad AMA. Pesticide Residues in Eggplant Fruit from Khartoum State, Sudan. J Health Pollut 2020;10:200304. [PMID: 32175175 DOI: 10.5696/2156-9614-10.25.200304] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Saber AN, Malhat F, Anagnostopoulos C, Kasiotis KM. Evaluation of dissipation, unit–unit-variability and terminal residue of etoxazole residues in strawberries from two different parts in Egypt. J Consum Prot Food Saf 2020;15:229-36. [DOI: 10.1007/s00003-019-01266-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
17 Gentil C, Fantke P, Mottes C, Basset-mens C. Challenges and ways forward in pesticide emission and toxicity characterization modeling for tropical conditions. Int J Life Cycle Assess 2020;25:1290-306. [DOI: 10.1007/s11367-019-01685-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
18 Sharma KK, Tripathy V, Rao CS, Bhushan VS, Reddy KN, Jyot G, Sahoo SK, Singh B, Mandal K, Banerjee H, Banerjee T, Bhattacharya S, George T, Beevi N, Sharma K, Tayade A, Gopal M, Walia S. Persistence, dissipation, and risk assessment of a combination formulation of trifloxystrobin and tebuconazole fungicides in/on tomato. Regul Toxicol Pharmacol 2019;108:104471. [PMID: 31493441 DOI: 10.1016/j.yrtph.2019.104471] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
19 Bagheri M, Al-Jabery K, Wunsch D, Burken JG. Examining plant uptake and translocation of emerging contaminants using machine learning: Implications to food security. Sci Total Environ 2020;698:133999. [PMID: 31499345 DOI: 10.1016/j.scitotenv.2019.133999] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
20 López‐ruiz R, Romero‐gonzález R, Ortega‐carrasco E, Garrido Frenich A. Dissipation studies of famoxadone in vegetables under greenhouse conditions using liquid chromatography coupled to high‐resolution mass spectrometry: putative elucidation of a new metabolite. J Sci Food Agric 2019;99:5368-76. [DOI: 10.1002/jsfa.9794] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
21 Bagheri M, Al-jabery K, Wunsch DC, Burken JG. A deeper look at plant uptake of environmental contaminants using intelligent approaches. Science of The Total Environment 2019;651:561-9. [DOI: 10.1016/j.scitotenv.2018.09.048] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
22 Feng X, Wang K, Pan L, Xu T, Zhang H, Fantke P. Measured and Modeled Residue Dynamics of Famoxadone and Oxathiapiprolin in Tomato Fields. J Agric Food Chem 2018;66:8489-95. [DOI: 10.1021/acs.jafc.8b02056] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
23 Greggs W, Burns T, Egeghy P, Embry MR, Fantke P, Gaborek B, Heine L, Jolliet O, Lee C, Muir D, Plotzke K, Rinkevich J, Sunger N, Tanir JY, Whittaker M. Qualitative approach to comparative exposure in alternatives assessment. Integr Environ Assess Manag 2019;15:880-94. [PMID: 29917303 DOI: 10.1002/ieam.4070] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
24 Peña N, Antón A, Kamilaris A, Fantke P. Modeling ecotoxicity impacts in vineyard production: Addressing spatial differentiation for copper fungicides. Science of The Total Environment 2018;616-617:796-804. [DOI: 10.1016/j.scitotenv.2017.10.243] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
25 Cipullo S, Prpich G, Campo P, Coulon F. Assessing bioavailability of complex chemical mixtures in contaminated soils: Progress made and research needs. Science of The Total Environment 2018;615:708-23. [DOI: 10.1016/j.scitotenv.2017.09.321] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 10.5] [Reference Citation Analysis]
26 Chen X, Li X, Pang K, Fan X, Ma Y, Hu J. Dissipation behavior and residue distribution of fluazaindolizine and its seven metabolites in tomato ecosystem based on SAX SPE procedure using HPLC-QqQ-MS/MS technique. Journal of Hazardous Materials 2018;342:698-704. [DOI: 10.1016/j.jhazmat.2017.08.056] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
27 Doucette WJ, Shunthirasingham C, Dettenmaier EM, Zaleski RT, Fantke P, Arnot JA. A review of measured bioaccumulation data on terrestrial plants for organic chemicals: Metrics, variability, and the need for standardized measurement protocols. Environ Toxicol Chem 2018;37:21-33. [PMID: 28976607 DOI: 10.1002/etc.3992] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 6.0] [Reference Citation Analysis]
28 Siddamallaiah L, Mohapatra S, Buddidathi R, Hebbar SS. Dissipation of spiromesifen and spiromesifen-enol on tomato fruit, tomato leaf, and soil under field and controlled environmental conditions. Environ Sci Pollut Res 2017;24:23559-70. [DOI: 10.1007/s11356-017-9954-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
29 Wender BA, Prado V, Fantke P, Ravikumar D, Seager TP. Sensitivity-based research prioritization through stochastic characterization modeling. Int J Life Cycle Assess 2018;23:324-32. [DOI: 10.1007/s11367-017-1322-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
30 Wang C, Wang Y, Wang R, Yan J, Lv Y, Li A, Gao J. Dissipation kinetics, residues and risk assessment of propiconazole and azoxystrobin in ginseng and soil. International Journal of Environmental Analytical Chemistry 2017;97:1-13. [DOI: 10.1080/03067319.2016.1272678] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]