BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Salazar P, Fernández I, Rodríguez MC, Hernández-creus A, González-mora JL. One-step green synthesis of silver nanoparticle-modified reduced graphene oxide nanocomposite for H2O2 sensing applications. Journal of Electroanalytical Chemistry 2019;855:113638. [DOI: 10.1016/j.jelechem.2019.113638] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Nazari A, Raeesi M, Salehi-mobarakeh H, Mahdavian AR. Ready-to-use optical H2O2 sensor based on stimuli-responsive polyacrylic film and nanofibers containing spiropyran. Dyes and Pigments 2022;204:110399. [DOI: 10.1016/j.dyepig.2022.110399] [Reference Citation Analysis]
2 Moslah M, Fredj Z, Dridi C. Development of a new highly sensitive serotonin sensor based on green synthesized silver nanoparticle decorated reduced graphene oxide. Anal Methods 2021;13:5187-94. [PMID: 34672314 DOI: 10.1039/d1ay01532j] [Reference Citation Analysis]
3 Jadhav S, Malavekar D, Bulakhe R, Patil U, In I, Lokhande C, Pawaskar P. Dual-Functional Electrodeposited Vertically Grown Ag-La2O3 Nanoflakes for Non-Enzymatic Glucose Sensing and Energy Storage Application. Surfaces and Interfaces 2021;23:101018. [DOI: 10.1016/j.surfin.2021.101018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Wang TP, Lee CL, Kuo CH, Kuo WC. Potential-induced sonoelectrochemical graphene nanosheets with vacancies as hydrogen peroxide reduction catalysts and sensors. Ultrason Sonochem 2021;72:105444. [PMID: 33387760 DOI: 10.1016/j.ultsonch.2020.105444] [Reference Citation Analysis]
5 Nayak SP, Ramamurthy SS, Kiran Kumar JK. Green synthesis of silver nanoparticles decorated reduced graphene oxide nanocomposite as an electrocatalytic platform for the simultaneous detection of dopamine and uric acid. Materials Chemistry and Physics 2020;252:123302. [DOI: 10.1016/j.matchemphys.2020.123302] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
6 Srikhao N, Kasemsiri P, Lorwanishpaisarn N, Okhawilai M. Green synthesis of silver nanoparticles using sugarcane leaves extract for colorimetric detection of ammonia and hydrogen peroxide. Res Chem Intermed 2021;47:1269-83. [DOI: 10.1007/s11164-020-04354-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
7 Hu Y, Hojamberdiev M, Geng D. Recent advances in enzyme-free electrochemical hydrogen peroxide sensors based on carbon hybrid nanocomposites. J Mater Chem C 2021;9:6970-90. [DOI: 10.1039/d1tc01053k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
8 Wang L, Liu Y, Yang R, Li J, Qu L. AgNPs–PDA–GR nanocomposites-based molecularly imprinted electrochemical sensor for highly recognition of 2,4,6-trichlorophenol. Microchemical Journal 2020;159:105567. [DOI: 10.1016/j.microc.2020.105567] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
9 Mujica ML, Sotomayor‐santander I, Hermosilla‐ibáñez P, Oyarzun‐ampuero F, Rodríguez MC, Rivas GA, Venegas‐yazigi D, Bollo S. MWCNT‐Organoimido Polyoxomolybdate Hybrid Material: Analytical Applications for Amperometric Sensing of Hydrogen Peroxide. Electroanalysis 2021;33:2105-14. [DOI: 10.1002/elan.202100149] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Turunc E, Kahraman O, Binzet R. Green synthesis of silver nanoparticles using pollen extract: Characterization, assessment of their electrochemical and antioxidant activities. Anal Biochem 2021;621:114123. [PMID: 33549546 DOI: 10.1016/j.ab.2021.114123] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Semwal V, Gupta BD. Highly selective SPR based fiber optic sensor for the detection of hydrogen peroxide. Sensors and Actuators B: Chemical 2021;329:129062. [DOI: 10.1016/j.snb.2020.129062] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Kalambate PK, Rao Z, Dhanjai, Wu J, Shen Y, Boddula R, Huang Y. Electrochemical (bio) sensors go green. Biosens Bioelectron 2020;163:112270. [PMID: 32568692 DOI: 10.1016/j.bios.2020.112270] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 11.5] [Reference Citation Analysis]
13 Silva AD, Paschoalino WJ, Damasceno JPV, Kubota LT. Structure, Properties, and Electrochemical Sensing Applications of Graphene‐Based Materials. ChemElectroChem 2020;7:4508-25. [DOI: 10.1002/celc.202001168] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
14 Wani IA. Review—Recent Advances in Biogenic Silver Nanoparticles & NanoComposite Based Plasmonic-Colorimetric and Electrochemical Sensors. ECS J Solid State Sci Technol 2021;10:047003. [DOI: 10.1149/2162-8777/abf2df] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]