BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sharma P, Kumar S, Pandey A. Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: A review. Journal of Environmental Chemical Engineering 2021;9:105684. [DOI: 10.1016/j.jece.2021.105684] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 19.5] [Reference Citation Analysis]
Number Citing Articles
1 Narayanan M, Ali SS, El-Sheekh M. A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects. J Environ Manage 2023;334:117532. [PMID: 36801803 DOI: 10.1016/j.jenvman.2023.117532] [Reference Citation Analysis]
2 Anju VT, Busi S, Mohan MS, Salim SA, Ar S, Imchen M, Kumavath R, Dyavaiah M, Prasad R. Surveillance and mitigation of soil pollution through metagenomic approaches. Biotechnol Genet Eng Rev 2023;:1-34. [PMID: 36881114 DOI: 10.1080/02648725.2023.2186330] [Reference Citation Analysis]
3 Lata S, Sharma S, Kaur S. OMICS Approaches in Mitigating Metal Toxicity in Comparison to Conventional Techniques Used in Cadmium Bioremediation. Water Air Soil Pollut 2023;234:148. [DOI: 10.1007/s11270-023-06145-7] [Reference Citation Analysis]
4 Ottoni JR, dos Santos Varjão MT, de Queiroz AC, Duarte AWF, Passarini MRZ. Metagenomic Approaches Applied to Bioremediation of Xenobiotics. Genomics Approach to Bioremediation 2023. [DOI: 10.1002/9781119852131.ch7] [Reference Citation Analysis]
5 Sharma H, Rai AK. Bioremediation Strategies for Sustainable E-waste Management. Microbial Technology for Sustainable E-waste Management 2023. [DOI: 10.1007/978-3-031-25678-3_5] [Reference Citation Analysis]
6 Tarek R, Ali GAM. Genetically Engineered Bacteria Used in Bioremediation Applications. Handbook of Biodegradable Materials 2023. [DOI: 10.1007/978-3-031-09710-2_12] [Reference Citation Analysis]
7 Tabinda AB, Tahir A, Dogar M, Yasar A, Rasheed R, Mahnoor. Role of Microorganisms in the Remediation of Toxic Metals from Contaminated Soil. Phytoremediation 2023. [DOI: 10.1007/978-3-031-17988-4_12] [Reference Citation Analysis]
8 Al-awaji N, Boukriba M, Idriss H, Ben Aissa MA, Bououdina M, Modwi A. Green Synthesis Ca-MgO Nanosorbent for the Uptake of Cobalt Ions from Aqueous Media. Advances in Materials Science and Engineering 2022;2022:1-12. [DOI: 10.1155/2022/9174538] [Reference Citation Analysis]
9 Chow Y, Foo K. Insights into the per- and polyfluoroalkyl substances-contaminated paper mill processing discharge: Detection, phytotoxicity, bioaccumulative profiling, and health risk verification. Journal of Cleaner Production 2022. [DOI: 10.1016/j.jclepro.2022.135478] [Reference Citation Analysis]
10 Singh A, Varma A, Prasad R, Porwal S. Bioprospecting uncultivable microbial diversity in tannery effluent contaminated soil using shotgun sequencing and bio-reduction of chromium by indigenous chromate reductase genes. Environ Res 2022;215:114338. [PMID: 36116499 DOI: 10.1016/j.envres.2022.114338] [Reference Citation Analysis]
11 Chatterjee S, Mahanty S, Das P, Chaudhuri P, Das S. Batch adsorption and process optimization for sequestration of Cr(VI) from aqueous solution using biofilm forming filamentous fungus Aspergillus niger BSC-1. Journal of Water Process Engineering 2022;50:103325. [DOI: 10.1016/j.jwpe.2022.103325] [Reference Citation Analysis]
12 Shurson GC, Urriola PE, Hung YT. Too Much of a Good Thing: Rethinking Feed Formulation and Feeding Practices for Zinc in Swine Diets to Achieve One Health and Environmental Sustainability. Animals (Basel) 2022;12. [PMID: 36496895 DOI: 10.3390/ani12233374] [Reference Citation Analysis]
13 Khalid S, Iqbal A, Javed A, Rashid J, ul Haq I, Barakat MAE, Kumar R. Analysis of diesel hydrocarbon decomposition using efficient indigenous bacterial isolate: Bacterial growth and biodegradation kinetics. Korean J Chem Eng 2022;39:3074-3082. [DOI: 10.1007/s11814-022-1229-6] [Reference Citation Analysis]
14 Zheng Y, Li Y, Guo S, Yu J, Chi R, Xiao C. Enhanced phytoremediation of hexavalent chromium contamination in phosphate mining wasteland by a phosphate solubilizing bacterium. Bioremediation Journal 2022. [DOI: 10.1080/10889868.2022.2136135] [Reference Citation Analysis]
15 Liu Q, Li X, He L. Health risk assessment of heavy metals in soils and food crops from a coexist area of heavily industrialized and intensively cropping in the Chengdu Plain, Sichuan, China. Front Chem 2022;10:988587. [DOI: 10.3389/fchem.2022.988587] [Reference Citation Analysis]
16 Mondal M, Kumar V, Bhatnagar A, Vithanage M, Selvasembian R, Ambade B, Meers E, Chaudhuri P, Biswas JK. Bioremediation of metal(loid) cocktail, struvite biosynthesis and plant growth promotion by a versatile bacterial strain Serratia sp. KUJM3: Exploiting environmental co-benefits. Environ Res 2022;:113937. [PMID: 35931193 DOI: 10.1016/j.envres.2022.113937] [Reference Citation Analysis]
17 Gaur VK, Gautam K, Sharma P, Gupta P, Dwivedi S, Srivastava JK, Varjani S, Ngo HH, Kim SH, Chang JS, Bui XT, Taherzadeh MJ, Parra-Saldívar R. Sustainable strategies for combating hydrocarbon pollution: Special emphasis on mobil oil bioremediation. Sci Total Environ 2022;832:155083. [PMID: 35395309 DOI: 10.1016/j.scitotenv.2022.155083] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Sharma P. Microbial communication during bioremediation of polyaromatic hydrocarbons. Syst Microbiol and Biomanuf 2022;2:430-444. [DOI: 10.1007/s43393-021-00072-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Sharma P, Bano A, Singh SP, Dubey NK, Chandra R, Iqbal HM. Microbial fingerprinting techniques and their role in the remediation of environmental pollution. Cleaner Chemical Engineering 2022;2:100026. [DOI: 10.1016/j.clce.2022.100026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Sharma P, Bano A, Singh SP, Dubey NK, Chandra R, Iqbal HM. Recent advancements in microbial-assisted remediation strategies for toxic contaminants. Cleaner Chemical Engineering 2022;2:100020. [DOI: 10.1016/j.clce.2022.100020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Hussain S, Khan M, Sheikh TMM, Mumtaz MZ, Chohan TA, Shamim S, Liu Y. Zinc Essentiality, Toxicity, and Its Bacterial Bioremediation: A Comprehensive Insight. Front Microbiol 2022;13:900740. [PMID: 35711754 DOI: 10.3389/fmicb.2022.900740] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
22 Dixit A, Singh D, Shukla SK. Changing scenario of municipal solid waste management in Kanpur city, India. J Mater Cycles Waste Manag. [DOI: 10.1007/s10163-022-01427-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Hoang HG, Thuy BTP, Lin C, Vo DN, Tran HT, Bahari MB, Le VG, Vu CT. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. Chemosphere 2022;:134514. [PMID: 35398076 DOI: 10.1016/j.chemosphere.2022.134514] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
24 Satapathy M, Sahariah BP, Jayapal A. Biodegradation of Highly Concentrated Phenol and Ammonia in the Presence of Oxyanions in Sequential A 2 /O MBBR System. J Hazard Toxic Radioact Waste 2022;26:04022006. [DOI: 10.1061/(asce)hz.2153-5515.0000691] [Reference Citation Analysis]
25 Sharma P, Singh SP, Iqbal HMN, Tong YW. Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. Environ Res 2022;211:113102. [PMID: 35300964 DOI: 10.1016/j.envres.2022.113102] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
26 Sirotiya V, Ahirwar A, Mourya M, Khan MJ, Rai A, Kwatra R, Sharma AK, Harish, Schoefs B, Marchand J, Varjani S, Vinayak V. Astaxanthin bioaccumulation in microalgae under environmental stress simulated in industrial effluents highlighting prospects of Haematococcus pluvialis: knowledge gaps and prospective approaches. Phytochem Rev. [DOI: 10.1007/s11101-022-09807-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Sharma P, Singh SP, Parakh SK, Tong YW. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022;13:4923-38. [PMID: 35164635 DOI: 10.1080/21655979.2022.2037273] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 20.0] [Reference Citation Analysis]
28 Sharma P. Role and significance of biofilm-forming microbes in phytoremediation -A review. Environmental Technology & Innovation 2022;25:102182. [DOI: 10.1016/j.eti.2021.102182] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
29 Sireesha S, Upadhyay U, Sreedhar I. Comparative studies of heavy metal removal from aqueous solution using novel biomass and biochar-based adsorbents: characterization, process optimization, and regeneration. Biomass Conv Bioref . [DOI: 10.1007/s13399-021-02186-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Sharma P, Singh SP, Tong YW. Phytoremediation using CRISPR-Cas9 technology. Current Developments in Biotechnology and Bioengineering 2022. [DOI: 10.1016/b978-0-323-99907-6.00009-8] [Reference Citation Analysis]
31 Tarek R, Ali GAM. Genetically Engineered Bacteria Used in Bioremediation Applications. Handbook of Biodegradable Materials 2022. [DOI: 10.1007/978-3-030-83783-9_12-1] [Reference Citation Analysis]
32 Singh M, Nanda K, Singh V, Singh SP. Metal polluted soil detoxification using phytoremediation technology. Current Developments in Biotechnology and Bioengineering 2022. [DOI: 10.1016/b978-0-323-99907-6.00011-6] [Reference Citation Analysis]
33 Sharma P, Singh SP, Tong YW. Phytoremediation of polycyclic aromatic hydrocarbons from soil. Current Developments in Biotechnology and Bioengineering 2022. [DOI: 10.1016/b978-0-323-99907-6.00003-7] [Reference Citation Analysis]
34 Yadav M, Singh M, Nanda K, Singh SP. Genetically engineered plants for phytoremediation of heavy metals. Current Developments in Biotechnology and Bioengineering 2022. [DOI: 10.1016/b978-0-323-99907-6.00017-7] [Reference Citation Analysis]
35 Sharma P, Soni R, Srivastava SK, Singh SP. Modern Landfilling Approaches for Waste Disposal and Management. Bioremediation of Environmental Pollutants 2022. [DOI: 10.1007/978-3-030-86169-8_10] [Reference Citation Analysis]
36 Sharma P, Nanda K, Yadav M, Shukla A, Srivastava SK, Kumar S, Singh SP. Remediation of noxious wastewater using nanohybrid adsorbent for preventing water pollution. Chemosphere 2021;:133380. [PMID: 34953871 DOI: 10.1016/j.chemosphere.2021.133380] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
37 Sharma P, Srinivas GLK, Varjani S, Kumar S. Emerging microalgae-based technologies in biorefinery and risk assessment issues: Bioeconomy for sustainable development. Sci Total Environ 2021;:152417. [PMID: 34923013 DOI: 10.1016/j.scitotenv.2021.152417] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
38 Maddalwar S, Kumar Nayak K, Kumar M, Singh L. Plant microbial fuel cell: Opportunities, challenges, and prospects. Bioresource Technology 2021;341:125772. [DOI: 10.1016/j.biortech.2021.125772] [Cited by in Crossref: 54] [Article Influence: 27.0] [Reference Citation Analysis]
39 Sharma P, Dutta D, Udayan A, Kumar S. Industrial wastewater purification through metal pollution reduction employing microbes and magnetic nanocomposites. Journal of Environmental Chemical Engineering 2021;9:106673. [DOI: 10.1016/j.jece.2021.106673] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
40 Wang J, Li Z, Wang Q, Lei Z, Yuan T, Shimizu K, Zhang Z, Adachi Y, Lee DJ, Chen R. Achieving stably enhanced biological phosphorus removal from aerobic granular sludge system via phosphorus rich liquid extraction during anaerobic period. Bioresour Technol 2021;:126439. [PMID: 34848332 DOI: 10.1016/j.biortech.2021.126439] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
41 Sharma P, Iqbal HM, Chandra R. Evaluation of pollution parameters and toxic elements in wastewater of pulp and paper industries in India: A case study. Case Studies in Chemical and Environmental Engineering 2021. [DOI: 10.1016/j.cscee.2021.100163] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
42 Sharma P, Kumar S. Characterization and phytotoxicity assessment of organic pollutants in old and fresh municipal solid wastes at open dump site: A case study. Environmental Technology & Innovation 2021;24:101938. [DOI: 10.1016/j.eti.2021.101938] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
43 Sharma P, Pandey AK, Kim S, Singh SP, Chaturvedi P, Varjani S. Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environmental Technology & Innovation 2021;24:101826. [DOI: 10.1016/j.eti.2021.101826] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
44 Rena, Machhirake NP, Yadav S, Krishna V, Kumar S. Toxicity-removal efficiency of Brassica juncea, Chrysopogon zizanioides and Pistia stratiotes to decontaminate biomedical ash under non-chelating and chelating conditions: A pilot- scale phytoextraction study. Chemosphere 2022;287:132416. [PMID: 34600014 DOI: 10.1016/j.chemosphere.2021.132416] [Reference Citation Analysis]
45 Gaur VK, Sharma P, Gaur P, Varjani S, Ngo HH, Guo W, Chaturvedi P, Singhania RR. Sustainable mitigation of heavy metals from effluents: Toxicity and fate with recent technological advancements. Bioengineered 2021;12:7297-313. [PMID: 34569893 DOI: 10.1080/21655979.2021.1978616] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
46 Maddalwar S, Kumar Nayak K, Kumar M, Singh L. Plant microbial fuel cell: Opportunities, challenges, and prospects. Bioresour Technol 2021;341:125772. [PMID: 34411941 DOI: 10.1016/j.biortech.2021.125772] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 17.0] [Reference Citation Analysis]
47 Sharma P, Ngo HH, Khanal S, Larroche C, Kim S, Pandey A. Efficiency of transporter genes and proteins in hyperaccumulator plants for metals tolerance in wastewater treatment: Sustainable technique for metal detoxification. Environmental Technology & Innovation 2021;23:101725. [DOI: 10.1016/j.eti.2021.101725] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
48 Tripathi S, Sharma P, Chandra R. Degradation of organometallic pollutants of distillery wastewater by autochthonous bacterial community in biostimulation and bioaugmentation process. Bioresour Technol 2021;338:125518. [PMID: 34273628 DOI: 10.1016/j.biortech.2021.125518] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]