BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kalla S. Use of membrane distillation for oily wastewater treatment – A review. Journal of Environmental Chemical Engineering 2021;9:104641. [DOI: 10.1016/j.jece.2020.104641] [Cited by in Crossref: 17] [Cited by in F6Publishing: 4] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 Guo S, Li J, Ren J, Zhao H, Cheng F. Membrane fouling of raw coking wastewater in membrane distillation: Identification of fouling potential of hydrophilic and hydrophobic components. Desalination 2022;539:115936. [DOI: 10.1016/j.desal.2022.115936] [Reference Citation Analysis]
2 Zheng L, Tang M, Wang Y, Hou D, Li X, Wang J. A novel Cu-BTC@PVA/PVDF Janus membrane with underwater-oleophobic/hydrophobic asymmetric wettability for anti-fouling membrane distillation. Separation and Purification Technology 2022;299:121807. [DOI: 10.1016/j.seppur.2022.121807] [Reference Citation Analysis]
3 Eljaddi T, Cabassud C. Wetting of photoplasmonic PVDF/silver membranes in photothermal membrane distillation: Identification of wetting mechanisms and comparison of wetting dynamics. Desalination 2022;540:116019. [DOI: 10.1016/j.desal.2022.116019] [Reference Citation Analysis]
4 Earwood J, Xu G, Xing Y, Deng B. Surface modified basalt membrane as a photothermal material for improved oily wastewater solar evaporation. Separation Science and Technology. [DOI: 10.1080/01496395.2022.2119149] [Reference Citation Analysis]
5 Yan X, Yang C, Ma C, Tao H, Cheng S, Chen L, Wang G, Lin X, Yao C. A novel janus membrane modified by MXene for enhanced anti-fouling and anti-wetting in direct contact membrane distillation. Chemosphere 2022;:136114. [PMID: 35998734 DOI: 10.1016/j.chemosphere.2022.136114] [Reference Citation Analysis]
6 Chen L, Li F, Jiang L, He F, Wei Y. UiO-66-NH2/PVA composite Janus membrane with a dense hydrophilic surface layer for strong resistance to fouling and wettability in membrane distillation. Journal of Water Process Engineering 2022;48:102887. [DOI: 10.1016/j.jwpe.2022.102887] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ahmad I, Abdullah N, Koji I, Yuzir A, Mohamad SE, Show PL, Cheah WY, Khoo KS. The role of restaurant wastewater for producing bioenergy towards a circular bioeconomy: A review on compositions, environmental impacts, and sustainable integrated management. Environ Res 2022;:113854. [PMID: 35841970 DOI: 10.1016/j.envres.2022.113854] [Reference Citation Analysis]
8 Ahmed SF, Mehejabin F, Momtahin A, Tasannum N, Faria NT, Mofijur M, Hoang AT, Vo DN, Mahlia TMI. Strategies to improve membrane performance in wastewater treatment. Chemosphere 2022;:135527. [PMID: 35780994 DOI: 10.1016/j.chemosphere.2022.135527] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Mansourizadeh A, Rezaei I, Lau WJ, Seah MQ, Ismail AF. A review on recent progress in environmental applications of membrane contactor technology. Journal of Environmental Chemical Engineering 2022;10:107631. [DOI: 10.1016/j.jece.2022.107631] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 He R, Liu S, Wang R, Fu T, Zhang R, Zhang Q, Zhou Y. In situ modification of melamine sponge by MgAl-LDH with super-hydrophobicity and excellent harsh environment tolerance for high flux emulsion separation. Separation and Purification Technology 2022;291:120916. [DOI: 10.1016/j.seppur.2022.120916] [Reference Citation Analysis]
11 Lim WJ, Ooi BS. Applications of responsive hydrogel to enhance the water recovery via membrane distillation and forward osmosis: A review. Journal of Water Process Engineering 2022;47:102828. [DOI: 10.1016/j.jwpe.2022.102828] [Reference Citation Analysis]
12 Lin J, Fitria FL, Wang Y, You S. Optimization of operational parameters in air-gap membrane distillation using central composite design applied in recovery of dye manufacturing wastewaters. Separation Science and Technology. [DOI: 10.1080/01496395.2022.2075390] [Reference Citation Analysis]
13 Seraj S, Mohammadi T, Tofighy MA. Graphene-based membranes for membrane distillation applications: A review. Journal of Environmental Chemical Engineering 2022. [DOI: 10.1016/j.jece.2022.107974] [Reference Citation Analysis]
14 Pandey A, Das RK, Chakraborty AK, Shukla S, Saxena S. Nanodefects assisted removal of reactive dyes using biomass derived reduced 3D-OGFs. Journal of Cleaner Production 2022. [DOI: 10.1016/j.jclepro.2022.132257] [Reference Citation Analysis]
15 Julian H, Nurgirisia N, Qiu G, Ting Y, Wenten IG. Membrane distillation for wastewater treatment: Current trends, challenges and prospects of dense membrane distillation. Journal of Water Process Engineering 2022;46:102615. [DOI: 10.1016/j.jwpe.2022.102615] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Zheng L, Wang K, Hou D, Jia X, Zhao Z. Hierarchically-structured superhydrophobic POSS/PVDF composite membrane for anti-fouling and anti-wetting membrane distillation. Desalination 2022;526:115512. [DOI: 10.1016/j.desal.2021.115512] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Bonyadi E, Ashtiani FZ, Ghorabi S, Niknejad AS. Bio-inspired hybrid coating of microporous polyethersulfone membranes by one-step deposition of polydopamine embedded with amino-functionalized SiO2 for high-efficiency oily wastewater treatment. Journal of Environmental Chemical Engineering 2022;10:107121. [DOI: 10.1016/j.jece.2021.107121] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Muhamad N, Hanoin M, Mokhtar N, Lau W, Jaafar J. Industrial application of membrane distillation technology using palm oil mill effluent in Malaysia. Materials Today: Proceedings 2022;57:1282-7. [DOI: 10.1016/j.matpr.2021.11.575] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Wang X, Sun K, Zhang G, Yang F, Lin S, Dong Y. Robust zirconia ceramic membrane with exceptional performance for purifying nano-emulsion oily wastewater. Water Res 2022;208:117859. [PMID: 34801820 DOI: 10.1016/j.watres.2021.117859] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 15.0] [Reference Citation Analysis]
20 Rahmaniyan B, Mohammadi T, Tofighy MA. Development of high flux PVDF/modified TNTs membrane with improved properties for desalination by vacuum membrane distillation. Journal of Environmental Chemical Engineering 2021;9:106730. [DOI: 10.1016/j.jece.2021.106730] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Zhang W, Wang Z, Li B. Omniphobic membrane with nest-like re-entrant structure via electrospraying strategy for robust membrane distillation. Journal of Membrane Science 2021;640:119824. [DOI: 10.1016/j.memsci.2021.119824] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Ngo MTT, Diep BQ, Sano H, Nishimura Y, Boivin S, Kodamatani H, Takeuchi H, Sakti SCW, Fujioka T. Membrane distillation for achieving high water recovery for potable water reuse. Chemosphere 2021;:132610. [PMID: 34678340 DOI: 10.1016/j.chemosphere.2021.132610] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Marathe D, Singh A, Raghunathan K, Thawale P, Kumari K. Current available treatment technologies for saline wastewater and land-based treatment as an emerging environment-friendly technology: A review. Water Environ Res 2021;93:2461-504. [PMID: 34453764 DOI: 10.1002/wer.1633] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
24 Yong T, Munusamy Y, Ding S, Ismail H. Fabrication of a novel latex-based membrane for oily wastewater filtration: effect of degassing on the properties of membrane. Iran Polym J 2021;30:989-1000. [DOI: 10.1007/s13726-021-00954-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
25 Tomczak W, Gryta M. Application of Capillary Polypropylene Membranes for Microfiltration of Oily Wastewaters: Experiments and Modeling. Fibers 2021;9:35. [DOI: 10.3390/fib9060035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Feria-díaz JJ, Correa-mahecha F, López-méndez MC, Rodríguez-miranda JP, Barrera-rojas J. Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review. Water 2021;13:1369. [DOI: 10.3390/w13101369] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
27 Abuhasel K, Kchaou M, Alquraish M, Munusamy Y, Jeng YT. Oily Wastewater Treatment: Overview of Conventional and Modern Methods, Challenges, and Future Opportunities. Water 2021;13:980. [DOI: 10.3390/w13070980] [Cited by in Crossref: 12] [Cited by in F6Publishing: 23] [Article Influence: 12.0] [Reference Citation Analysis]
28 Kalla S, Baghel R, Upadhyaya S, Singh K. Separation of HCl/water mixture using air gap membrane distillation, Taguchi optimization and artificial neural network. Chemical Product and Process Modeling 2020;0:20200078. [DOI: 10.1515/cppm-2020-0078] [Reference Citation Analysis]