BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Murphy A, Mathiesen R, Houltz Y, Li J, Lockowandt C, Henriksson K, Melville N, Browne D. Direct observation of spatially isothermal equiaxed solidification of an Al–Cu alloy in microgravity on board the MASER 13 sounding rocket. Journal of Crystal Growth 2016;454:96-104. [DOI: 10.1016/j.jcrysgro.2016.08.054] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Zhang Y, Lu J, He Y. Long-term low gravity environment simulation method based on double inclined and horizontal planes cyclical simulation device. Measurement 2022. [DOI: 10.1016/j.measurement.2022.111830] [Reference Citation Analysis]
2 Mooney RP, Sturz L, Zimmermann G, Mangelinck-noël N, Nguyen-thi H, Li Y, Browne DJ, Mcfadden S. Concurrent model for sharp and progressive columnar to equiaxed transitions validated by directional solidification experiments processed in microgravity conditions. Computational Materials Science 2022;210:111436. [DOI: 10.1016/j.commatsci.2022.111436] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Liu X, Yu Q, Pan X, Yu Z, Lu X. Image contrast enhancement algorithm for X-ray observation of space materials in situ. J Inst 2022;17:P06010. [DOI: 10.1088/1748-0221/17/06/p06010] [Reference Citation Analysis]
4 Becker M, Kolbe M, Steinbach S, Kargl F. Surface boundary-dendrite interactions in thin metallic Al-alloy samples. Scripta Materialia 2022;209:114386. [DOI: 10.1016/j.scriptamat.2021.114386] [Reference Citation Analysis]
5 Ngomesse F, Reinhart G, Soltani H, Zimmermann G, Browne D, Sillekens W, Nguyen-thi H. In situ investigation of the Columnar-to-Equiaxed Transition during directional solidification of Al–20 wt.%Cu alloys on Earth and in microgravity. Acta Materialia 2021;221:117401. [DOI: 10.1016/j.actamat.2021.117401] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
6 Wegener M, Dreißigacker C, Becker M, Kargl F. Isothermal furnace for long-term in situ and real-time X-radiography solidification experiments. Rev Sci Instrum 2021;92:035114. [PMID: 33819986 DOI: 10.1063/5.0037398] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Becker M, Sturz L, Bräuer D, Kargl F. A comparative in situ X-radiography and DNN model study of solidification characteristics of an equiaxed dendritic Al-Ge alloy sample. Acta Materialia 2020;201:286-302. [DOI: 10.1016/j.actamat.2020.09.078] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Soltani H, Reinhart G, Benoudia M, Ngomesse F, Zahzouh M, Nguyen-thi H. Impact of growth velocity on grain structure formation during directional solidification of a refined Al-20 wt.%Cu alloy. Journal of Crystal Growth 2020;548:125819. [DOI: 10.1016/j.jcrysgro.2020.125819] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
9 Nabavizadeh SA, Lenart R, Eshraghi M, Felicelli SD, Tewari SN, Grugel RN. Dendritic solidification of Succinonitrile-0.24 wt% water alloy: A comparison with microgravity experiments for validating dendrite tip velocity. Acta Astronautica 2020;175:163-73. [DOI: 10.1016/j.actaastro.2020.05.059] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
10 Kurz W, Rappaz M, Trivedi R. Progress in modelling solidification microstructures in metals and alloys. Part II: dendrites from 2001 to 2018. International Materials Reviews 2021;66:30-76. [DOI: 10.1080/09506608.2020.1757894] [Cited by in Crossref: 14] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
11 Kargl F, Drescher J, Dreißigacker C, Balter M, Becker M, Wegener M, Sondermann E. XRISE-M: X-radiography facility for solidification and diffusion studies of alloys aboard sounding rockets. Rev Sci Instrum 2020;91:013906. [PMID: 32012603 DOI: 10.1063/1.5124548] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
12 Menendez HT, Heckel M, Sack A, Pöschel T. X-ray tomography in micro-gravity. Review of Scientific Instruments 2019;90:105103. [DOI: 10.1063/1.5109622] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
13 Olmedilla A, Založnik M, Combeau H. Quantitative 3D mesoscopic modeling of grain interactions during equiaxed dendritic solidification in a thin sample. Acta Materialia 2019;173:249-61. [DOI: 10.1016/j.actamat.2019.05.019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
14 Olmedilla A, Založnik M, Cisternas Fernández M, Viardin A, Combeau H. Three-dimensional mesoscopic modeling of equiaxed dendritic solidification in a thin sample: effect of convection flow. IOP Conf Ser : Mater Sci Eng 2019;529:012040. [DOI: 10.1088/1757-899x/529/1/012040] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
15 Becker M, Klein S, Kargl F. Free dendritic tip growth velocities measured in Al-Ge. Phys Rev Materials 2018;2. [DOI: 10.1103/physrevmaterials.2.073405] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
16 Li Y, Mangelinck-noël N, Zimmermann G, Sturz L, Nguyen-thi H. Effect of solidification conditions and surface pores on the microstructure and columnar-to-equiaxed transition in solidification under microgravity. Journal of Alloys and Compounds 2018;749:344-54. [DOI: 10.1016/j.jallcom.2018.03.300] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
17 Xu Y, Casari D, Du Q, Mathiesen RH, Arnberg L, Li Y. Heterogeneous nucleation and grain growth of inoculated aluminium alloys: An integrated study by in-situ X-radiography and numerical modelling. Acta Materialia 2017;140:224-39. [DOI: 10.1016/j.actamat.2017.08.053] [Cited by in Crossref: 78] [Cited by in F6Publishing: 72] [Article Influence: 15.6] [Reference Citation Analysis]