BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021;332:127-47. [PMID: 33609621 DOI: 10.1016/j.jconrel.2021.02.016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Karayianni M, Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. Journal of Polymer Science 2021;59:1874-98. [DOI: 10.1002/pol.20210430] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
2 Han H, Li S, Zhong Y, Huang Y, Wang K, Jin Q, Ji J, Yao K. Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian Journal of Pharmaceutical Sciences 2021. [DOI: 10.1016/j.ajps.2021.06.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Kaur J, Gulati M, Kapoor B, Jha NK, Gupta PK, Gupta G, Chellappan DK, Devkota HP, Prasher P, Ansari MS, Aba Alkhayl FF, Arshad MF, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Advances in designing of polymeric micelles for biomedical application in brain related diseases. Chemico-Biological Interactions 2022. [DOI: 10.1016/j.cbi.2022.109960] [Reference Citation Analysis]
4 Xu J, Cao W, Wang P, Liu H. Tumor-Derived Membrane Vesicles: A Promising Tool for Personalized Immunotherapy. Pharmaceuticals (Basel) 2022;15:876. [PMID: 35890175 DOI: 10.3390/ph15070876] [Reference Citation Analysis]
5 Hemrajani C, Negi P, Parashar A, Gupta G, Jha NK, Singh SK, Chellappan DK, Dua K. Overcoming drug delivery barriers and challenges in topical therapy of atopic dermatitis: A nanotechnological perspective. Biomed Pharmacother 2022;147:112633. [PMID: 35030434 DOI: 10.1016/j.biopha.2022.112633] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
6 Ren J, Cao Y, Li L, Wang X, Lu H, Yang J, Wang S. Self-assembled polymeric micelle as a novel mRNA delivery carrier. J Control Release 2021;338:537-47. [PMID: 34481924 DOI: 10.1016/j.jconrel.2021.08.061] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ramesh K, Yadav S, Mishra AK, Jo S, Park S, Oh C, Lim KT. Interface‐cross ‐linked micelles of poly(D,L‐lactide)‐ b ‐poly(furfuryl methacrylate)‐ b ‐poly(N‐acryloylmorpholine) for near‐infrared‐triggered drug delivery application. Polymers for Advanced Techs. [DOI: 10.1002/pat.5663] [Reference Citation Analysis]
8 Alhaj-suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114482] [Reference Citation Analysis]
9 Yu Q, England RM, Gunnarsson A, Luxenhofer R, Treacher K, Ashford MB. Designing Highly Stable Poly(sarcosine)-Based Telodendrimer Micelles with High Drug Content Exemplified with Fulvestrant. Macromolecules. [DOI: 10.1021/acs.macromol.1c02086] [Reference Citation Analysis]
10 Hani U, M. YB, Wahab S, Siddiqua A, Osmani RAM, Rahamathulla M. A Comprehensive Review of Current Perspectives on Novel Drug Delivery Systems and Approaches for Lung Cancer Management. J Pharm Innov. [DOI: 10.1007/s12247-021-09582-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Deng Z, Tian Y, Song J, An G, Yang P. mRNA Vaccines: The Dawn of a New Era of Cancer Immunotherapy. Front Immunol 2022;13:887125. [PMID: 35720301 DOI: 10.3389/fimmu.2022.887125] [Reference Citation Analysis]
12 Zhao R, Liu J, Li Z, Zhang W, Wang F, Zhang B. Recent Advances in CXCL12/CXCR4 Antagonists and Nano-Based Drug Delivery Systems for Cancer Therapy. Pharmaceutics 2022;14:1541. [PMID: 35893797 DOI: 10.3390/pharmaceutics14081541] [Reference Citation Analysis]
13 Biglione C, Neumann‐tran TMP, Kanwal S, Klinger D. Amphiphilic micro‐ and nanogels: Combining properties from internal hydrogel networks, solid particles, and micellar aggregates. Journal of Polymer Science 2021;59:2665-703. [DOI: 10.1002/pol.20210508] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Sun L, Zhao P, Chen M, Leng J, Luan Y, Du B, Yang J, Yang Y, Rong R. Taxanes prodrug-based nanomedicines for cancer therapy. J Control Release 2022;348:672-91. [PMID: 35691501 DOI: 10.1016/j.jconrel.2022.06.004] [Reference Citation Analysis]
15 Liu F, Zhou Y, Liu L, Pan H, Liu H. Effect of 2-ethylbutyric acid on thermodynamics stability of various nonionic surfactants tanshione-loaded micelles. Journal of Molecular Liquids 2022. [DOI: 10.1016/j.molliq.2022.119775] [Reference Citation Analysis]
16 Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021;:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Reference Citation Analysis]
17 Tefas LR, Barbălată C, Tefas C, Tomuță I. Salinomycin-Based Drug Delivery Systems: Overcoming the Hurdles in Cancer Therapy. Pharmaceutics 2021;13:1120. [PMID: 34452081 DOI: 10.3390/pharmaceutics13081120] [Reference Citation Analysis]
18 Sezgin-Bayindir Z, Losada-Barreiro S, Bravo-Díaz C, Sova M, Kristl J, Saso L. Nanotechnology-Based Drug Delivery to Improve the Therapeutic Benefits of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2021;10:685. [PMID: 33925605 DOI: 10.3390/antiox10050685] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Guo H. Dissipative particle dynamics simulation on phase behaviour of reduction-responsive polyprodrug amphiphile. Molecular Simulation 2022;48:594-601. [DOI: 10.1080/08927022.2022.2037586] [Reference Citation Analysis]
20 Nejati K, Rastegar M, Fathi F, Dadashpour M, Arabzadeh A. Nanoparticle-based drug delivery systems to overcome gastric cancer drug resistance. Journal of Drug Delivery Science and Technology 2022;70:103231. [DOI: 10.1016/j.jddst.2022.103231] [Reference Citation Analysis]
21 Guo C, Zhang C, Xia Z, Song B, Hu W, Cui Y, Xue Y, Xia M, Xu D, Zhang S, Fang J. Nano-designed CO donor ameliorates bleomycin-induced pulmonary fibrosis via macrophage manipulation. J Control Release 2021;341:566-77. [PMID: 34864115 DOI: 10.1016/j.jconrel.2021.11.047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Hang J, Chen Y, Tian P, Yu R, Wang M, Zhao M. Preparation and pharmacodynamics of niclosamide micelles. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2021.103088] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Xu W, Ye C, Qing X, Liu S, Lv X, Wang W, Dong X, Zhang Y. Multi-target tyrosine kinase inhibitor nanoparticle delivery systems for cancer therapy. Mater Today Bio 2022;16:100358. [PMID: 35880099 DOI: 10.1016/j.mtbio.2022.100358] [Reference Citation Analysis]
24 Sharma R, Chatterjee E, Mathew J, Sharma S, Rao NV, Pan CH, Lee SB, Dhingra A, Grewal AS, Liou JP, Guru SK, Nepali K. Accommodation of ring C expanded deoxyvasicinone in the HDAC inhibitory pharmacophore culminates into a tractable anti-lung cancer agent and pH-responsive nanocarrier. Eur J Med Chem 2022;240:114602. [PMID: 35858522 DOI: 10.1016/j.ejmech.2022.114602] [Reference Citation Analysis]
25 Tian T, Ruan J, Zhang J, Zhao CX, Chen D, Shan J. Nanocarrier-Based Tumor-Targeting Drug Delivery Systems for Hepatocellular Carcinoma Treatments: Enhanced Therapeutic Efficacy and Reduced Drug Toxicity. J Biomed Nanotechnol 2022;18:660-76. [PMID: 35715919 DOI: 10.1166/jbn.2022.3297] [Reference Citation Analysis]
26 Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-Polymer Encapsulated Aggregation-Induced Emission Nanoparticles for Tumor Theranostics. Adv Healthc Mater 2021;10:e2101036. [PMID: 34414687 DOI: 10.1002/adhm.202101036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
27 Okubo K, Umezawa M, Soga K. Near Infrared Fluorescent Nanostructure Design for Organic/Inorganic Hybrid System. Biomedicines 2021;9:1583. [PMID: 34829811 DOI: 10.3390/biomedicines9111583] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
28 Navarro-Barreda D, Bedrina B, Galindo F, Miravet JF. Glutathione-responsive molecular nanoparticles from a dianionic bolaamphiphile and their use as carriers for targeted delivery. J Colloid Interface Sci 2021;608:2009-17. [PMID: 34752979 DOI: 10.1016/j.jcis.2021.10.142] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Nooreen R, Nene S, Jain H, Prasannanjaneyulu V, Chitlangya P, Otavi S, Khatri DK, Raghuvanshi RS, Singh SB, Srivastava S. Polymer nanotherapeutics: A versatile platform for effective rheumatoid arthritis therapy. J Control Release 2022;348:397-419. [PMID: 35660632 DOI: 10.1016/j.jconrel.2022.05.054] [Reference Citation Analysis]
30 Xiang J, Shen Y, Zhang Y, Liu X, Zhou Q, Zhou Z, Tang J, Shao S, Shen Y. Multipotent Poly(Tertiary Amine-Oxide) Micelles for Efficient Cancer Drug Delivery. Adv Sci (Weinh) 2022;9:e2200173. [PMID: 35187868 DOI: 10.1002/advs.202200173] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Zhang J, Liu M, Zeng Z. The antisolvent coprecipitation method for enhanced bioavailability of poorly water-soluble drugs. Int J Pharm 2022;:122043. [PMID: 35902056 DOI: 10.1016/j.ijpharm.2022.122043] [Reference Citation Analysis]
32 Huang J, Zhuang C, Chen J, Chen X, Li X, Zhang T, Wang B, Feng Q, Zheng X, Gong M, Gong Q, Xiao K, Luo K, Li W. Targeted Drug/Gene/Photodynamic Therapy via a Stimuli-Responsive Dendritic-Polymer-Based Nanococktail for Treatment of EGFR-TKI-Resistant Non-Small-Cell Lung Cancer. Adv Mater 2022;:e2201516. [PMID: 35481881 DOI: 10.1002/adma.202201516] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release 2021;334:64-95. [PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
34 Marquet F, Patrulea V, Borchard G. Comparison of triblock copolymeric micelles based on α- and ε-poly(L-lysine): a Cornelian choice. Polym J 2022;54:199-209. [DOI: 10.1038/s41428-021-00552-5] [Reference Citation Analysis]
35 Fatfat Z, Fatfat M, Gali-Muhtasib H. Micelles as potential drug delivery systems for colorectal cancer treatment. World J Gastroenterol 2022; 28(25): 2867-2880 [DOI: 10.3748/wjg.v28.i25.2867] [Reference Citation Analysis]
36 Yang X, Duan J, Wu L. Research advances in NQO1-responsive prodrugs and nanocarriers for cancer treatment. Future Med Chem 2022. [PMID: 35102756 DOI: 10.4155/fmc-2021-0289] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Kaur J, Gulati M, Kumar Jha N, Disouza J, Patravale V, Dua K, Kumar Singh S. Recent advances in developing polymeric micelles for treating cancer: breakthroughs and bottlenecks in their clinical translation. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.02.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
38 Zhang M, Yu H, Hu J, Zhao Z, Liu L, Yang G, Wang T, Han G, Song S. Therapeutic carrier based on solanesol and hyaluronate for synergistic tumor treatment. Int J Biol Macromol 2022;201:20-8. [PMID: 34998870 DOI: 10.1016/j.ijbiomac.2021.12.194] [Reference Citation Analysis]
39 Awad M, Thomas N, Barnes TJ, Prestidge CA. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J Control Release 2022:S0168-3659(22)00231-0. [PMID: 35483636 DOI: 10.1016/j.jconrel.2022.04.035] [Reference Citation Analysis]
40 Kamenova K, Grancharov G, Kortenova V, Petrov PD. Redox-Responsive Crosslinked Mixed Micelles for Controllable Release of Caffeic Acid Phenethyl Ester. Pharmaceutics 2022;14:679. [DOI: 10.3390/pharmaceutics14030679] [Reference Citation Analysis]
41 Yang L, Hou X, Zhang Y, Wang D, Liu J, Huang F, Liu J. NIR-activated self-sensitized polymeric micelles for enhanced cancer chemo-photothermal therapy. J Control Release 2021;339:114-29. [PMID: 34536448 DOI: 10.1016/j.jconrel.2021.09.017] [Reference Citation Analysis]
42 Tu L, Liao Z, Luo Z, Wu Y, Herrmann A, Huo S. Ultrasound‐controlled drug release and drug activation for cancer therapy. Exploration 2021;1:20210023. [DOI: 10.1002/exp.20210023] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
43 Chen Z, Chen X, Liu G, Han K, Chen J, Wang J. Editorial: The Application of Nanoengineering in Advanced Drug Delivery and Translational Research. Front Bioeng Biotechnol 2022;10:886109. [DOI: 10.3389/fbioe.2022.886109] [Reference Citation Analysis]
44 Kojima C, Hirose T, Katayama R, Matsumoto A. Solubilization of Paclitaxel by Self-Assembled Amphiphilic Phospholipid-Mimetic Polymers with Varied Hydrophobicity. Polymers (Basel) 2021;13:2805. [PMID: 34451342 DOI: 10.3390/polym13162805] [Reference Citation Analysis]
45 Zhang W, Taheri-ledari R, Ganjali F, Afruzi FH, Hajizadeh Z, Saeidirad M, Qazi FS, Kashtiaray A, Sehat SS, Hamblin MR, Maleki A. Nanoscale bioconjugates: A review of the structural attributes of drug-loaded nanocarrier conjugates for selective cancer therapy. Heliyon 2022;8:e09577. [DOI: 10.1016/j.heliyon.2022.e09577] [Reference Citation Analysis]
46 Biswas S. Polymeric micelles as drug-delivery systems in cancer: challenges and opportunities. Nanomedicine (Lond) 2021;16:1541-4. [PMID: 34169749 DOI: 10.2217/nnm-2021-0081] [Reference Citation Analysis]
47 Zhou M, Luo Y, Zeng W, Yang X, Chen T, Zhang L, He X, Yi X, Li Y, Yi X. A Co-delivery System Based on a Dimeric Prodrug and Star-Shaped Polymeric Prodrug Micelles for Drug Delivery. Front Chem 2021;9:765021. [PMID: 34746097 DOI: 10.3389/fchem.2021.765021] [Reference Citation Analysis]
48 Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Mundekkad D, Cho WC. Nanoparticles in Clinical Translation for Cancer Therapy. Int J Mol Sci 2022;23:1685. [PMID: 35163607 DOI: 10.3390/ijms23031685] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
50 Kaur J, Gulati M, Zacconi F, Dureja H, Loebenberg R, Ansari MS, AlOmeir O, Alam A, Chellappan DK, Gupta G, Jha NK, Pinto TJA, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Biomedical Applications of polymeric micelles in the treatment of diabetes mellitus: Current success and future approaches. Expert Opin Drug Deliv 2022;:1-23. [PMID: 35695697 DOI: 10.1080/17425247.2022.2087629] [Reference Citation Analysis]
51 Zhong J, Quan Y, Zhao X, Li S, He Z, Ye G, Sun M, Miao Y, Ma C, Yang H, Chen X, Huang Y. Coassembling functionalized glycopolypeptides to prepare pH-responsive self-indicating nanocomplexes to manipulate self-assembly/drug delivery and visualize intracellular drug release. Materials Science and Engineering: C 2022. [DOI: 10.1016/j.msec.2022.112711] [Reference Citation Analysis]
52 Bholakant R, Dong B, Zhou X, Huang X, Zhao C, Huang D, Zhong Y, Qian H, Chen W, Feijen J. Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy. J Mater Chem B 2021;9:8718-38. [PMID: 34635905 DOI: 10.1039/d1tb01771c] [Reference Citation Analysis]
53 Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
54 Shpotya V, Perepukhov A, Maksimychev A, Gomzyak V, Sedush N, Chvalun S. Structure determination of hyperbranched polyester BOLTORN H40 by 1D- and 2D-NMR spectroscopy. Polym Bull . [DOI: 10.1007/s00289-022-04274-3] [Reference Citation Analysis]
55 Chen W, Liu P. Dendritic polyurethane-based prodrug as unimolecular micelles for precise ultrasound-activated localized drug delivery. Materials Today Chemistry 2022;24:100819. [DOI: 10.1016/j.mtchem.2022.100819] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Ding Y, Wang C, Sun Z, Wu Y, You W, Mao Z, Wang W. Mesenchymal Stem Cells Engineered by Nonviral Vectors: A Powerful Tool in Cancer Gene Therapy. Pharmaceutics 2021;13:913. [PMID: 34205513 DOI: 10.3390/pharmaceutics13060913] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Bensa V, Calarco E, Giusto E, Perri P, Corrias MV, Ponzoni M, Brignole C, Pastorino F. Retinoids Delivery Systems in Cancer: Liposomal Fenretinide for Neuroectodermal-Derived Tumors. Pharmaceuticals (Basel) 2021;14:854. [PMID: 34577553 DOI: 10.3390/ph14090854] [Reference Citation Analysis]
58 Almeida A, Castro F, Resende C, Lúcio M, Schwartz S Jr, Sarmento B. Oral delivery of camptothecin-loaded multifunctional chitosan-based micelles is effective in reduce colorectal cancer. J Control Release 2022:S0168-3659(22)00448-5. [PMID: 35905784 DOI: 10.1016/j.jconrel.2022.07.029] [Reference Citation Analysis]
59 Pan Z, Yang G, Yuan J, Pan M, Li J, Tan H. Effect of the disulfide bond and polyethylene glycol on the degradation and biophysicochemical properties of polyurethane micelles. Biomater Sci 2022. [PMID: 34988575 DOI: 10.1039/d1bm01422f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
60 Qin X, He L, Feng C, Fan D, Liang W, Wang Q, Fang J. Injectable Micelle-Incorporated Hydrogels for the Localized Chemo-Immunotherapy of Breast Tumors. ACS Appl Mater Interfaces 2021;13:46270-81. [PMID: 34550685 DOI: 10.1021/acsami.1c11563] [Reference Citation Analysis]