BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li F, Qin Y, Lee J, Liao H, Wang N, Davis TP, Qiao R, Ling D. Stimuli-responsive nano-assemblies for remotely controlled drug delivery. Journal of Controlled Release 2020;322:566-92. [DOI: 10.1016/j.jconrel.2020.03.051] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 20.7] [Reference Citation Analysis]
Number Citing Articles
1 Bag N, Bardhan S, Roy S, Roy J, Mondal D, Guo B, Das S. Nanoparticle-mediated stimulus-responsive antibacterial therapy. Biomater Sci 2023;11:1994-2019. [PMID: 36748318 DOI: 10.1039/d2bm01941h] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Wang JJ, Liu XX, Zhu CC, Wang TZ, Wang SY, Liu Y, Pan XY, Liu MH, Chen D, Li LL, Zhou ZM, Nan KH. Improving ocular bioavailability of hydrophilic drugs through dynamic covalent complexation. J Control Release 2023;355:395-405. [PMID: 36739907 DOI: 10.1016/j.jconrel.2023.01.081] [Reference Citation Analysis]
3 Xu J, Tang X, Yang X, Zhao MX. pH and GSH dual-responsive drug-controlled nanomicelles for breast cancer treatment. Biomed Mater 2023;18. [PMID: 36720160 DOI: 10.1088/1748-605X/acb7bb] [Reference Citation Analysis]
4 Zhang H, Chen W, Wang J, Du W, Wang B, Song L, Hu Y, Ma X. A novel ROS-activable self-immolative prodrug for tumor-specific amplification of oxidative stress and enhancing chemotherapy of mitoxantrone. Biomaterials 2023;293:121954. [PMID: 36538847 DOI: 10.1016/j.biomaterials.2022.121954] [Reference Citation Analysis]
5 Peng Z, Ning K, Tang X, He R, Zhang D, Ma Y, Guan S, Zhai J. A multifunctional DNA repair enzyme and magnetic dual-triggered theranostic nanosystem for intelligent drug delivery. Materials & Design 2023. [DOI: 10.1016/j.matdes.2023.111611] [Reference Citation Analysis]
6 Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B. Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 2023;157:114062. [PMID: 36469969 DOI: 10.1016/j.biopha.2022.114062] [Reference Citation Analysis]
7 Kong X, Qi Y, Wang X, Jiang R, Wang J, Fang Y, Gao J, Chu Hwang K. Nanoparticle Drug Delivery Systems and Their Applications as Targeted Therapies for Triple Negative Breast Cancer. Progress in Materials Science 2023. [DOI: 10.1016/j.pmatsci.2023.101070] [Reference Citation Analysis]
8 Wu T, Zhao K, Zhang C, Zhong T, Li Z, Bao Z, Gao Y, Du F. Promising Delivery Platform for Smart Pest Control with High Water-Retaining Capacity. ACS Appl Mater Interfaces 2022. [PMID: 36472305 DOI: 10.1021/acsami.2c15737] [Reference Citation Analysis]
9 Armenia I, Cuestas Ayllón C, Torres Herrero B, Bussolari F, Alfranca G, Grazú V, Martínez de la Fuente J. Photonic and magnetic materials for on-demand local drug delivery. Advanced Drug Delivery Reviews 2022;191:114584. [DOI: 10.1016/j.addr.2022.114584] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
10 Liang X, Gillies ER. Self-immolative Amphiphilic Diblock Copolymers with Individually Triggerable Blocks. ACS Polym Au 2022;2:313-23. [DOI: 10.1021/acspolymersau.2c00013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Pallavi P, Harini K, Gowtham P, Girigoswami K, Girigoswami A. Fabrication of Polymersomes: A Macromolecular Architecture in Nanotherapeutics. Chemistry 2022;4:1028-1043. [DOI: 10.3390/chemistry4030070] [Reference Citation Analysis]
12 Jiang JS, Zang J, Ru Y, Luo Y, Song JK, Luo Y, Fei XY, Zhang Z, Zhang Y, Yang D, Zhou M, Chen QL, Bai Y, Li YY, Kuai L, Li B. Patient-driven discovery of CCN1 to rescue cutaneous wound healing in diabetes via the intracellular EIF3A/CCN1/ATG7 signaling by nanoparticle-enabled delivery. Biomaterials 2022;:121698. [PMID: 36038422 DOI: 10.1016/j.biomaterials.2022.121698] [Reference Citation Analysis]
13 Yuan Z, Ding J, Zhang Y, Huang B, Song Z, Meng X, Ma X, Gong X, Huang Z, Ma S, Xiang S, Xu W. Components, mechanisms and applications of stimuli-responsive polymer gels. European Polymer Journal 2022;177:111473. [DOI: 10.1016/j.eurpolymj.2022.111473] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wu S, Hu S, Yang X. Dual Drug Loaded, pH-Sensitive Metal-Organic Particles for Synergistic Cancer Therapy. Front Bioeng Biotechnol 2022;10:945148. [DOI: 10.3389/fbioe.2022.945148] [Reference Citation Analysis]
15 Mirhadi E, Mashreghi M, Askarizadeh A, Mehrabian A, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Redox-sensitive doxorubicin liposome: a formulation approach for targeted tumor therapy. Sci Rep 2022;12:11310. [PMID: 35788647 DOI: 10.1038/s41598-022-15239-x] [Reference Citation Analysis]
16 Zheng X, Mai X, Bao S, Wang P, Hong Y, Han Y, Sun J, Xiong F. Some Preliminary Results to Eradicate Leukemic Cells in Extracorporeal Circulation by Actuating Doxorubicin-Loaded Nanochains of Fe3O4 Nanoparticles. Cells 2022;11:2007. [DOI: 10.3390/cells11132007] [Reference Citation Analysis]
17 Li C, Zhao T, Li L, Hu X, Li C, Chen W, Hu Y. Stimuli-Responsive Gold Nanocages for Cancer Diagnosis and Treatment. Pharmaceutics 2022;14:1321. [DOI: 10.3390/pharmaceutics14071321] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Zhang W, Taheri-ledari R, Ganjali F, Afruzi FH, Hajizadeh Z, Saeidirad M, Qazi FS, Kashtiaray A, Sehat SS, Hamblin MR, Maleki A. Nanoscale bioconjugates: A review of the structural attributes of drug-loaded nanocarrier conjugates for selective cancer therapy. Heliyon 2022;8:e09577. [DOI: 10.1016/j.heliyon.2022.e09577] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Zeng W, Zhang H, Yuan X, Chen T, Pei Z, Ji X. Two-Dimensional Nanomaterial-based catalytic Medicine: Theories, advanced catalyst and system design. Adv Drug Deliv Rev 2022;184:114241. [PMID: 35367308 DOI: 10.1016/j.addr.2022.114241] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
20 Liao H, Niu C. Role of CD47-SIRPα Checkpoint in Nanomedicine-Based Anti-Cancer Treatment. Front Bioeng Biotechnol 2022;10:887463. [DOI: 10.3389/fbioe.2022.887463] [Reference Citation Analysis]
21 Sánchez JM, Carratalá JV, Serna N, Unzueta U, Nolan V, Sánchez-chardi A, Voltà-durán E, López-laguna H, Ferrer-miralles N, Villaverde A, Vazquez E. The Poly-Histidine Tag H6 Mediates Structural and Functional Properties of Disintegrating, Protein-Releasing Inclusion Bodies. Pharmaceutics 2022;14:602. [DOI: 10.3390/pharmaceutics14030602] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Hernández Becerra E, Quinchia J, Castro C, Orozco J. Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. Nanomaterials 2022;12:836. [DOI: 10.3390/nano12050836] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Lin X, Wu J, Liu Y, Lin N, Hu J, Zhang B. Stimuli-Responsive Drug Delivery Systems for the Diagnosis and Therapy of Lung Cancer. Molecules 2022;27:948. [DOI: 10.3390/molecules27030948] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Wu S, Liao D, Li X, Liu Z, Zhang L, Mo FM, Hu S, Xia J, Yang X. Endogenous Oleoylethanolamide Crystals Loaded Lipid Nanoparticles with Enhanced Hydrophobic Drug Loading Capacity for Efficient Stroke Therapy. Int J Nanomedicine 2021;16:8103-15. [PMID: 34992362 DOI: 10.2147/IJN.S344318] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Liu H, Prachyathipsakul T, Koyasseril-Yehiya TM, Le SP, Thayumanavan S. Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. Mater Horiz 2022;9:164-93. [PMID: 34549764 DOI: 10.1039/d1mh01091c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
26 Chu S, Wang AL, Bhattacharya A, Montclare JK. Protein Based Biomaterials for Therapeutic and Diagnostic Applications. Prog Biomed Eng (Bristol) 2022;4:012003. [PMID: 34950852 DOI: 10.1088/2516-1091/ac2841] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
27 Bobde SS. Polymersomes for targeting to brain tumors. Nanocarriers for Drug-Targeting Brain Tumors 2022. [DOI: 10.1016/b978-0-323-90773-6.00013-0] [Reference Citation Analysis]
28 Sheshala R, Madheswaran T, Panneerselvam J, Vora L, Thakur RRS. Stimuli-responsive nanomaterials in infectious diseases. Nanotheranostics for Treatment and Diagnosis of Infectious Diseases 2022. [DOI: 10.1016/b978-0-323-91201-3.00005-0] [Reference Citation Analysis]
29 Cardoso VMDO, Ferreira LMB, Comparetti EJ, Sampaio I, Ferreira NN, Miranda RR, Zucolotto V. Stimuli-responsive polymeric nanoparticles as controlled drug delivery systems. Stimuli-Responsive Nanocarriers 2022. [DOI: 10.1016/b978-0-12-824456-2.00011-4] [Reference Citation Analysis]
30 Sun L, Wang J, Li L, Xu ZP. Dynamic nano-assemblies based on two-dimensional inorganic nanoparticles: Construction and preclinical demonstration. Adv Drug Deliv Rev 2022;180:114031. [PMID: 34736985 DOI: 10.1016/j.addr.2021.114031] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
31 El-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021;13:4327. [PMID: 34960878 DOI: 10.3390/polym13244327] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Dai Y, Du W, Gao D, Zhu H, Zhang F, Chen K, Ni H, Li M, Fan Q, Shen Q. Near-infrared-II light excitation thermosensitive liposomes for photoacoustic imaging-guided enhanced photothermal-chemo synergistic tumor therapy. Biomater Sci 2021. [PMID: 34878465 DOI: 10.1039/d1bm01669e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Ocampo Osorio F, Augusto Jativa Herrera J, Moscoso Londoño O, Leandro Londoño Calderón C. Nanoferrites-Based Drug Delivery Systems as Adjuvant Therapy for Cancer Treatments. Current Challenges and Future Perspectives. Ferrites - Synthesis and Applications 2021. [DOI: 10.5772/intechopen.100225] [Reference Citation Analysis]
34 Ling D. Dynamic nanoassembly-based drug delivery systems on the horizon. J Control Release 2021;339:547-52. [PMID: 34478749 DOI: 10.1016/j.jconrel.2021.08.045] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Berillo D, Yeskendir A, Zharkinbekov Z, Raziyeva K, Saparov A. Peptide-Based Drug Delivery Systems. Medicina (Kaunas) 2021;57:1209. [PMID: 34833427 DOI: 10.3390/medicina57111209] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
36 K. Purushothaman B, Uma Maheswari P, Meera Sheriffa Begum K. Glutamic acid functionalized casein-calciumferrite magnetic nanosystem based on paired targeting effect for synergistic anticancer therapy. Materials Letters 2021;303:130550. [DOI: 10.1016/j.matlet.2021.130550] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Zhao L, Song X, Ouyang X, Zhou J, Li J, Deng D. Bioinspired Virus-like Fe3O4/Au@C Nanovector for Programmable Drug Delivery via Hierarchical Targeting. ACS Appl Mater Interfaces 2021;13:49631-41. [PMID: 34636534 DOI: 10.1021/acsami.1c11261] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
38 Abdellatif AAH, Mohammed HA, Khan RA, Singh V, Bouazzaoui A, Yusuf M, Akhtar N, Khan M, Al-subaiyel A, Mohammed SAA, Al-omar MS. Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity. Nanotechnology Reviews 2021;10:1493-559. [DOI: 10.1515/ntrev-2021-0096] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
39 Nehra M, Uthappa UT, Kumar V, Kumar R, Dixit C, Dilbaghi N, Mishra YK, Kumar S, Kaushik A. Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner. J Control Release 2021;338:224-43. [PMID: 34418523 DOI: 10.1016/j.jconrel.2021.08.027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
40 Li Y, Yang L, Xu X, Li M, Zhang Y, Lin Q, Gong T, Sun X, Zhang Z, Zhang L. Multifunctional Size-Expandable Nanomedicines Enhance Tumor Accumulation and Penetration for Synergistic Chemo-Photothermal Therapy. ACS Appl Mater Interfaces 2021;13:46361-74. [PMID: 34579526 DOI: 10.1021/acsami.1c14170] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
41 Jeong H, Park W, Kim DH, Na K. Dynamic nanoassemblies of nanomaterials for cancer photomedicine. Adv Drug Deliv Rev 2021;177:113954. [PMID: 34478780 DOI: 10.1016/j.addr.2021.113954] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
42 Long K, Yang Y, Lv W, Jiang K, Li Y, Lo ACY, Lam WC, Zhan C, Wang W. Green Light-Triggered Intraocular Drug Release for Intravenous Chemotherapy of Retinoblastoma. Adv Sci (Weinh) 2021;8:e2101754. [PMID: 34448360 DOI: 10.1002/advs.202101754] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
43 Tang S, Qiao R. Liquid Metal Particles and Polymers: A Soft–Soft System with Exciting Properties. Acc Mater Res 2021;2:966-78. [DOI: 10.1021/accountsmr.1c00179] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
44 Zhang B, Tang G, He J, Yan X, Fan K. Ferritin nanocage: A promising and designable multi-module platform for constructing dynamic nanoassembly-based drug nanocarrier. Adv Drug Deliv Rev 2021;176:113892. [PMID: 34331986 DOI: 10.1016/j.addr.2021.113892] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
45 Qin G, Hu C, Jiang Y, Dong S, Liu L, Zhao H. pH /enzyme/light triple‐responsive vesicles from lysine‐based amphiphilic diblock copolymers. Journal of Polymer Science 2021;59:1958-71. [DOI: 10.1002/pol.20210245] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
46 Zhang L, Sun H, Zhao J, Lee J, Ee Low L, Gong L, Chen Y, Wang N, Zhu C, Lin P, Liang Z, Wei M, Ling D, Li F. Dynamic nanoassemblies for imaging and therapy of neurological disorders. Adv Drug Deliv Rev 2021;175:113832. [PMID: 34146626 DOI: 10.1016/j.addr.2021.113832] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
47 Živojević K, Mladenović M, Djisalov M, Mundzic M, Ruiz-Hernandez E, Gadjanski I, Knežević NŽ. Advanced mesoporous silica nanocarriers in cancer theranostics and gene editing applications. J Control Release 2021;337:193-211. [PMID: 34293320 DOI: 10.1016/j.jconrel.2021.07.029] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
48 Thananukul K, Kaewsaneha C, Opaprakasit P, Lebaz N, Errachid A, Elaissari A. Smart gating porous particles as new carriers for drug delivery. Adv Drug Deliv Rev 2021;174:425-46. [PMID: 33930490 DOI: 10.1016/j.addr.2021.04.023] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
49 Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021;174:140-67. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
50 Low LE, Wang Q, Chen Y, Lin P, Yang S, Gong L, Lee J, Siva SP, Goh BH, Li F, Ling D. Microenvironment-tailored nanoassemblies for the diagnosis and therapy of neurodegenerative diseases. Nanoscale 2021;13:10197-238. [PMID: 34027535 DOI: 10.1039/d1nr02127c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021;335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
52 Yu H, Sui P, Ge S, Chang X, Li Q, Li A, Sun X. Construction and modulation of dual responsive fluorescent aggregates combined with molecular dynamics simulation. Nano Select 2021;2:2176-84. [DOI: 10.1002/nano.202000222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
54 Zhou Z, Sun T, Jiang C. Recent advances on drug delivery nanocarriers for cerebral disorders. Biomed Mater 2021;16:024104. [PMID: 33455956 DOI: 10.1088/1748-605X/abdc97] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
55 Cui H, Shen Y, Schiffelers RM, Hennink WE. Transform nanomedicine with breakthrough thinking? J Control Release 2021;330:1130-1. [PMID: 33189787 DOI: 10.1016/j.jconrel.2020.11.018] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Roma-Rodrigues C, Raposo LR, Valente R, Fernandes AR, Baptista PV. Combined cancer therapeutics-Tackling the complexity of the tumor microenvironment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1704. [PMID: 33565269 DOI: 10.1002/wnan.1704] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
57 Placha D, Jampilek J. Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems. Pharmaceutics 2021;13:64. [PMID: 33419176 DOI: 10.3390/pharmaceutics13010064] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
58 Xu C, Pu K. Second near-infrared photothermal materials for combinational nanotheranostics. Chem Soc Rev 2021;50:1111-37. [DOI: 10.1039/d0cs00664e] [Cited by in Crossref: 227] [Cited by in F6Publishing: 253] [Article Influence: 113.5] [Reference Citation Analysis]
59 Dichiarante V, Pigliacelli C, Metrangolo P, Baldelli Bombelli F. Confined space design by nanoparticle self-assembly. Chem Sci 2020;12:1632-46. [PMID: 34163923 DOI: 10.1039/d0sc05697a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
60 Torres J, Dhas N, Longhi M, García MC. Overcoming Biological Barriers With Block Copolymers-Based Self-Assembled Nanocarriers. Recent Advances in Delivery of Anticancer Therapeutics. Front Pharmacol 2020;11:593197. [PMID: 33329001 DOI: 10.3389/fphar.2020.593197] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
61 Choi S. Activation Strategies in Image-Guided Nanotherapeutic Delivery. JNT 2020;1:78-104. [DOI: 10.3390/jnt1010007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
62 Byun J, Kim D, Choi J, Shim G, Oh YK. Photosensitizer-Trapped Gold Nanocluster for Dual Light-Responsive Phototherapy. Biomedicines 2020;8:E521. [PMID: 33233655 DOI: 10.3390/biomedicines8110521] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
63 Lavrador P, Esteves MR, Gaspar VM, Mano JF. Stimuli‐Responsive Nanocomposite Hydrogels for Biomedical Applications. Adv Funct Mater 2021;31:2005941. [DOI: 10.1002/adfm.202005941] [Cited by in Crossref: 92] [Cited by in F6Publishing: 95] [Article Influence: 30.7] [Reference Citation Analysis]
64 Krasia-Christoforou T, Socoliuc V, Knudsen KD, Tombácz E, Turcu R, Vékás L. From Single-Core Nanoparticles in Ferrofluids to Multi-Core Magnetic Nanocomposites: Assembly Strategies, Structure, and Magnetic Behavior. Nanomaterials (Basel) 2020;10:E2178. [PMID: 33142887 DOI: 10.3390/nano10112178] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
65 Dos Santos DM, Correa DS, Medeiros ES, Oliveira JE, Mattoso LHC. Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications. ACS Appl Mater Interfaces 2020;12:45673-701. [PMID: 32937068 DOI: 10.1021/acsami.0c12410] [Cited by in Crossref: 73] [Cited by in F6Publishing: 78] [Article Influence: 24.3] [Reference Citation Analysis]
66 Su S, M Kang P. Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics 2020;12:E837. [PMID: 32882875 DOI: 10.3390/pharmaceutics12090837] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
67 Low LE, Wu J, Lee J, Tey BT, Goh B, Gao J, Li F, Ling D. Tumor-responsive dynamic nanoassemblies for targeted imaging, therapy and microenvironment manipulation. Journal of Controlled Release 2020;324:69-103. [DOI: 10.1016/j.jconrel.2020.05.014] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 10.3] [Reference Citation Analysis]
68 Ong YS, Bañobre-López M, Costa Lima SA, Reis S. A multifunctional nanomedicine platform for co-delivery of methotrexate and mild hyperthermia towards breast cancer therapy. Mater Sci Eng C Mater Biol Appl 2020;116:111255. [PMID: 32806240 DOI: 10.1016/j.msec.2020.111255] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
69 Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020;158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 8.7] [Reference Citation Analysis]