BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lee J, Jenjob R, Davaa E, Yang S. NIR-responsive ROS generating core and ROS-triggered 5′-Deoxy-5-fluorocytidine releasing shell structured water-swelling microgel for locoregional combination cancer therapy. Journal of Controlled Release 2019;305:120-9. [DOI: 10.1016/j.jconrel.2019.05.016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Wang L, Liu C, Lu W, Xu L, Kuang L, Hua D. ROS-sensitive Crocin-loaded chitosan microspheres for lung targeting and attenuation of radiation-induced lung injury. Carbohydrate Polymers 2023. [DOI: 10.1016/j.carbpol.2023.120628] [Reference Citation Analysis]
2 Zhou W, Jia Y, Liu Y, Chen Y, Zhao P. Tumor Microenvironment-Based Stimuli-Responsive Nanoparticles for Controlled Release of Drugs in Cancer Therapy. Pharmaceutics 2022;14:2346. [DOI: 10.3390/pharmaceutics14112346] [Reference Citation Analysis]
3 Lee J, Davaa E, Jiang Y, Shin K, Kim MH, An H, Kim J, Cho SK, Yang S. Pheophorbide A and SN38 conjugated hyaluronan nanoparticles for photodynamic- and cascadic chemotherapy of cancer stem-like ovarian cancer. Carbohydrate Polymers 2022;289:119455. [DOI: 10.1016/j.carbpol.2022.119455] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Yang Y, Zeng Z, Almatrafi E, Huang D, Zhang C, Xiong W, Cheng M, Zhou C, Wang W, Song B, Tang X, Zeng G, Xiao R, Li Z. Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coordination Chemistry Reviews 2022;458:214427. [DOI: 10.1016/j.ccr.2022.214427] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
5 Yang Z, Deng W, Zhang X, An Y, Liu Y, Yao H, Zhang Z. Opportunities and Challenges of Nanoparticles in Digestive Tumours as Anti-Angiogenic Therapies. Front Oncol 2021;11:789330. [PMID: 35083147 DOI: 10.3389/fonc.2021.789330] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Wu Y, Li J, Zhong X, Shi J, Cheng Y, He C, Li J, Zou L, Fu C, Chen M, Zhang J, Gao H. A pH-sensitive supramolecular nanosystem with chlorin e6 and triptolide co-delivery for chemo-photodynamic combination therapy. Asian Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ajps.2021.12.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
7 Cao Z, Li D, Wang J, Yang X. Reactive oxygen species-sensitive polymeric nanocarriers for synergistic cancer therapy. Acta Biomater 2021;130:17-31. [PMID: 34058390 DOI: 10.1016/j.actbio.2021.05.023] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
8 Lu F, Zhang H, Pan W, Li N, Tang B. Delivery nanoplatforms based on dynamic covalent chemistry. Chem Commun (Camb) 2021;57:7067-82. [PMID: 34195709 DOI: 10.1039/d1cc02246f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Zhao Y, Jiang X, Ma Q, Zhao Y, Zhang H, Wang Q, Ding Z, Liu M, Wang Z, Han J. High payload nanoparticles composed of 7-ethyl-10-hydroxycamptothecin and chlorin e6 for synergistic chemo-photodynamic combination therapy. Dyes and Pigments 2021;184:108819. [DOI: 10.1016/j.dyepig.2020.108819] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. View 2021;2:20200042. [DOI: 10.1002/viw.20200042] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
11 Ma Q, Zhao Y, Guan Q, Zhao Y, Zhang H, Ding Z, Wang Q, Wu Y, Liu M, Han J. Amphiphilic block polymer-based self-assembly of high payload nanoparticles for efficient combinatorial chemo-photodynamic therapy. Drug Deliv 2020;27:1656-66. [PMID: 33233958 DOI: 10.1080/10717544.2020.1850921] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Liu Y, Liu Y, Zang J, Abdullah AAI, Li Y, Dong H. Design Strategies and Applications of ROS-Responsive Phenylborate Ester-Based Nanomedicine. ACS Biomater Sci Eng 2020;6:6510-27. [PMID: 33320631 DOI: 10.1021/acsbiomaterials.0c01190] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
13 Kang S, Baskaran R, Ozlu B, Davaa E, Kim JJ, Shim BS, Yang SG. T1-Positive Mn2+-Doped Multi-Stimuli Responsive poly(L-DOPA) Nanoparticles for Photothermal and Photodynamic Combination Cancer Therapy. Biomedicines 2020;8:E417. [PMID: 33066425 DOI: 10.3390/biomedicines8100417] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
14 Zhang Y, Xu C, Yang X, Pu K. Photoactivatable Protherapeutic Nanomedicine for Cancer. Adv Mater 2020;32:e2002661. [PMID: 32667701 DOI: 10.1002/adma.202002661] [Cited by in Crossref: 113] [Cited by in F6Publishing: 119] [Article Influence: 37.7] [Reference Citation Analysis]
15 Li J, Pan K, Tian H, Yin L. The Potential of Electrospinning/Electrospraying Technology in the Rational Design of Hydrogel Structures. Macromol Mater Eng 2020;305:2000285. [DOI: 10.1002/mame.202000285] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
16 Zhang F, Wu Q, Liu H. NIR light-triggered nanomaterials-based prodrug activation towards cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1643. [PMID: 32394638 DOI: 10.1002/wnan.1643] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
17 Sadoughi F, Mansournia MA, Mirhashemi SM. The potential role of chitosan-based nanoparticles as drug delivery systems in pancreatic cancer. IUBMB Life. 2020;72:872-883. [PMID: 32057169 DOI: 10.1002/iub.2252] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
18 Jenjob R, Phakkeeree T, Crespy D. Core–shell particles for drug-delivery, bioimaging, sensing, and tissue engineering. Biomater Sci 2020;8:2756-70. [DOI: 10.1039/c9bm01872g] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
19 Zhao Y, Zhao Y, Ma Q, Zhang H, Liu Y, Hong J, Ding Z, Liu M, Han J. Novel carrier-free nanoparticles composed of 7-ethyl-10-hydroxycamptothecin and chlorin e6: Self-assembly mechanism investigation and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 2020;188:110722. [PMID: 31887649 DOI: 10.1016/j.colsurfb.2019.110722] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
20 Xu X, Zeng Z, Huang Z, Sun Y, Huang Y, Chen J, Ye J, Yang H, Yang C, Zhao C. Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy. Carbohydr Polym 2020;229:115394. [PMID: 31826406 DOI: 10.1016/j.carbpol.2019.115394] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]