BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Khan AR, Yang X, Fu M, Zhai G. Recent progress of drug nanoformulations targeting to brain. Journal of Controlled Release 2018;291:37-64. [DOI: 10.1016/j.jconrel.2018.10.004] [Cited by in Crossref: 63] [Cited by in F6Publishing: 56] [Article Influence: 15.8] [Reference Citation Analysis]
Number Citing Articles
1 Juhairiyah F, de Lange ECM. Understanding Drug Delivery to the Brain Using Liposome-Based Strategies: Studies that Provide Mechanistic Insights Are Essential. AAPS J 2021;23:114. [PMID: 34713363 DOI: 10.1208/s12248-021-00648-z] [Reference Citation Analysis]
2 Bruch GE, Fernandes LF, Bassi BL, Alves MTR, Pereira IO, Frézard F, Massensini AR. Liposomes for drug delivery in stroke. Brain Research Bulletin 2019;152:246-56. [DOI: 10.1016/j.brainresbull.2019.07.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 4.7] [Reference Citation Analysis]
3 Xu Y, Wei L, Wang H. Progress and perspectives on nanoplatforms for drug delivery to the brain. Journal of Drug Delivery Science and Technology 2020;57:101636. [DOI: 10.1016/j.jddst.2020.101636] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
4 Yang B, Jiang J, Jiang L, Zheng P, Wang F, Zhou Y, Chen Z, Li M, Lian M, Tang S, Liu X, Peng H, Wang Q. Chitosan mediated solid lipid nanoparticles for enhanced liver delivery of zedoary turmeric oil in vivo. Int J Biol Macromol 2020;149:108-15. [PMID: 31987952 DOI: 10.1016/j.ijbiomac.2020.01.222] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 12.5] [Reference Citation Analysis]
5 Xu M, Feng T, Liu B, Qiu F, Xu Y, Zhao Y, Zheng Y. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics 2021;11:8926-44. [PMID: 34522219 DOI: 10.7150/thno.62330] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
6 Yang J, Shi Z, Liu R, Wu Y, Zhang X. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology. Theranostics 2020;10:3223-39. [PMID: 32194864 DOI: 10.7150/thno.40298] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 15.5] [Reference Citation Analysis]
7 Romano E, Netti PA, Torino E. Exosomes in Gliomas: Biogenesis, Isolation, and Preliminary Applications in Nanomedicine. Pharmaceuticals (Basel) 2020;13:E319. [PMID: 33086616 DOI: 10.3390/ph13100319] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
8 Singh A, Maharana SK, Shukla R, Kesharwani P. Nanotherapeutics approaches for targeting alpha synuclien protein in the management of Parkinson disease. Process Biochemistry 2021;110:181-94. [DOI: 10.1016/j.procbio.2021.08.008] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Sintov AC. AmyloLipid Nanovesicles: A self-assembled lipid-modified starch hybrid system constructed for direct nose-to-brain delivery of curcumin. Int J Pharm 2020;588:119725. [PMID: 32763387 DOI: 10.1016/j.ijpharm.2020.119725] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
10 Joshi BS, Zuhorn IS. Heparan sulfate proteoglycan-mediated dynamin-dependent transport of neural stem cell exosomes in an in vitro blood-brain barrier model. Eur J Neurosci 2021;53:706-19. [PMID: 32939863 DOI: 10.1111/ejn.14974] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
11 Cui J, Xu Y, Tu H, Zhao H, Wang H, Di L, Wang R. Gather wisdom to overcome barriers: Well-designed nano-drug delivery systems for treating gliomas. Acta Pharm Sin B 2022;12:1100-25. [PMID: 35530155 DOI: 10.1016/j.apsb.2021.08.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
12 Cheng G, Liu Y, Ma R, Cheng G, Guan Y, Chen X, Wu Z, Chen T. Anti-Parkinsonian Therapy: Strategies for Crossing the Blood–Brain Barrier and Nano-Biological Effects of Nanomaterials. Nano-Micro Lett 2022;14. [DOI: 10.1007/s40820-022-00847-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Witika BA, Poka MS, Demana PH, Matafwali SK, Melamane S, Malungelo Khamanga SM, Makoni PA. Lipid-Based Nanocarriers for Neurological Disorders: A Review of the State-of-the-Art and Therapeutic Success to Date. Pharmaceutics 2022;14:836. [DOI: 10.3390/pharmaceutics14040836] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zakharova LY, Kaupova GI, Gabdrakhmanov DR, Gaynanova GA, Ermakova EA, Mukhitov AR, Galkina IV, Cheresiz SV, Pokrovsky AG, Skvortsova PV, Gogolev YV, Zuev YF. Alkyl triphenylphosphonium surfactants as nucleic acid carriers: complexation efficacy toward DNA decamers, interaction with lipid bilayers and cytotoxicity studies. Phys Chem Chem Phys 2019;21:16706-17. [PMID: 31321392 DOI: 10.1039/c9cp02384d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 6.3] [Reference Citation Analysis]
15 Hegde MM, Prabhu S, Mutalik S, Chatterjee A, Goda JS, Satish Rao BS. Multifunctional lipidic nanocarriers for effective therapy of glioblastoma: recent advances in stimuli-responsive, receptor and subcellular targeted approaches. J Pharm Investig 2022;52:49-74. [DOI: 10.1007/s40005-021-00548-6] [Reference Citation Analysis]
16 Yuan FY, Zhang MX, Shi YH, Li MH, Ou JY, Bai WF, Zhang MS. Bone marrow stromal cells-derived exosomes target DAB2IP to induce microglial cell autophagy, a new strategy for neural stem cell transplantation in brain injury. Exp Ther Med 2020;20:2752-64. [PMID: 32765770 DOI: 10.3892/etm.2020.9008] [Reference Citation Analysis]
17 Khan H, Pan JJ, Li Y, Zhang Z, Yang GY. Native and Bioengineered Exosomes for Ischemic Stroke Therapy. Front Cell Dev Biol 2021;9:619565. [PMID: 33869170 DOI: 10.3389/fcell.2021.619565] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Mojarad-Jabali S, Farshbaf M, Walker PR, Hemmati S, Fatahi Y, Zakeri-Milani P, Sarfraz M, Valizadeh H. An update on actively targeted liposomes in advanced drug delivery to glioma. Int J Pharm 2021;602:120645. [PMID: 33915182 DOI: 10.1016/j.ijpharm.2021.120645] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zhang X, Ye D, Yang L, Yue Y, Sultan D, Pacia CP, Pang H, Detering L, Heo GS, Luehmann H, Choksi A, Sethi A, Limbrick DD, Becher OJ, Tai YC, Rubin JB, Chen H, Liu Y. Magnetic Resonance Imaging-Guided Focused Ultrasound-Based Delivery of Radiolabeled Copper Nanoclusters to Diffuse Intrinsic Pontine Glioma. ACS Appl Nano Mater 2020;3:11129-34. [PMID: 34337344 DOI: 10.1021/acsanm.0c02297] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
20 Onyeje C, Lavik E. Highlighting the usage of polymeric nanoparticles for the treatment of traumatic brain injury: A review study. Neurochem Int 2021;147:105048. [PMID: 33901586 DOI: 10.1016/j.neuint.2021.105048] [Reference Citation Analysis]
21 Hernando S, Nikolakopoulou P, Voulgaris D, Hernandez RM, Igartua M, Herland A. Dual effect of TAT functionalized DHAH lipid nanoparticles with neurotrophic factors in human BBB and microglia cultures. Fluids Barriers CNS 2022;19:22. [PMID: 35300705 DOI: 10.1186/s12987-022-00315-1] [Reference Citation Analysis]
22 Fan Q, Liu Y, Cui G, Zhong Z, Deng C. Brain delivery of Plk1 inhibitor via chimaeric polypeptide polymersomes for safe and superb treatment of orthotopic glioblastoma. J Control Release 2021;329:1139-49. [PMID: 33131697 DOI: 10.1016/j.jconrel.2020.10.043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Wu Y, Lu Z, Li Y, Yang J, Zhang X. Surface Modification of Iron Oxide-Based Magnetic Nanoparticles for Cerebral Theranostics: Application and Prospection. Nanomaterials (Basel) 2020;10:E1441. [PMID: 32722002 DOI: 10.3390/nano10081441] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
24 Baskin J, Jeon JE, Lewis SJG. Nanoparticles for drug delivery in Parkinson's disease. J Neurol 2021;268:1981-94. [PMID: 33141248 DOI: 10.1007/s00415-020-10291-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Han H, Bártolo R, Li J, Shahbazi M, Santos HA. Biomimetic platelet membrane-coated nanoparticles for targeted therapy. European Journal of Pharmaceutics and Biopharmaceutics 2022;172:1-15. [DOI: 10.1016/j.ejpb.2022.01.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
26 Alvi SB, Ahmed S, Sridharan D, Naseer Z, Pracha N, Wang H, Boudoulas KD, Zhu W, Sayed N, Khan M. De novo Drug Delivery Modalities for Treating Damaged Hearts: Current Challenges and Emerging Solutions. Front Cardiovasc Med 2021;8:742315. [PMID: 34651028 DOI: 10.3389/fcvm.2021.742315] [Reference Citation Analysis]
27 Lv W, Liu Y, Li S, Lv L, Lu H, Xin H. Advances of nano drug delivery system for the theranostics of ischemic stroke. J Nanobiotechnology 2022;20:248. [PMID: 35641956 DOI: 10.1186/s12951-022-01450-5] [Reference Citation Analysis]
28 Sabu A, Liu TI, Ng SS, Doong RA, Huang YF, Chiu HC. Nanomedicines Targeting Glioma Stem Cells. ACS Appl Mater Interfaces 2022. [PMID: 35544684 DOI: 10.1021/acsami.2c03538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Zhang M, Zang X, Wang M, Li Z, Qiao M, Hu H, Chen D. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges. J Mater Chem B 2019;7:2421-33. [PMID: 32255119 DOI: 10.1039/c9tb00170k] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 11.3] [Reference Citation Analysis]
30 Han L, Jiang C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B 2021;11:2306-25. [PMID: 34522589 DOI: 10.1016/j.apsb.2020.11.023] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 27.0] [Reference Citation Analysis]
31 Kaźmierczak Z, Szostak-Paluch K, Przybyło M, Langner M, Witkiewicz W, Jędruchniewicz N, Dąbrowska K. Endocytosis in cellular uptake of drug delivery vectors: Molecular aspects in drug development. Bioorg Med Chem 2020;28:115556. [PMID: 32828419 DOI: 10.1016/j.bmc.2020.115556] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
32 Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Patel RJ, Ajazuddin, Ravichandiran V, Murty US, Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release 2020;321:372-415. [PMID: 32061621 DOI: 10.1016/j.jconrel.2020.02.020] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 21.5] [Reference Citation Analysis]
33 de Castro RR, do Carmo FA, Martins C, Simon A, de Sousa VP, Rodrigues CR, Cabral LM, Sarmento B. Clofazimine functionalized polymeric nanoparticles for brain delivery in the tuberculosis treatment. Int J Pharm 2021;602:120655. [PMID: 33915184 DOI: 10.1016/j.ijpharm.2021.120655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Chirio D, Peira E, Sapino S, Dianzani C, Barge A, Muntoni E, Morel S, Gallarate M. Stearoyl-Chitosan Coated Nanoparticles Obtained by Microemulsion Cold Dilution Technique. Int J Mol Sci 2018;19:E3833. [PMID: 30513699 DOI: 10.3390/ijms19123833] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
35 Maaz A, Blagbrough IS, De Bank PA. In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery. Pharmaceutics 2021;13:1079. [PMID: 34371770 DOI: 10.3390/pharmaceutics13071079] [Reference Citation Analysis]
36 Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv 2020;27:585-98. [PMID: 32264719 DOI: 10.1080/10717544.2020.1748758] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 52.0] [Reference Citation Analysis]
37 Grimaudo MA, Krishnakumar GS, Giusto E, Furlani F, Bassi G, Rossi A, Molinari F, Lista F, Montesi M, Panseri S. Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomater 2022;140:88-101. [PMID: 34852302 DOI: 10.1016/j.actbio.2021.11.038] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
38 Niu J, Wang L, Yuan M, Zhang J, Chen H, Zhang Y. Dual-targeting nanocarrier based on glucose and folic acid functionalized pluronic P105 polymeric micelles for enhanced brain distribution. Journal of Drug Delivery Science and Technology 2020;57:101343. [DOI: 10.1016/j.jddst.2019.101343] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
39 Teleanu RI, Gherasim O, Gherasim TG, Grumezescu V, Grumezescu AM, Teleanu DM. Nanomaterial-Based Approaches for Neural Regeneration. Pharmaceutics 2019;11:E266. [PMID: 31181719 DOI: 10.3390/pharmaceutics11060266] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
40 Gajbhiye KR, Pawar A, Mahadik KR, Gajbhiye V. PEGylated nanocarriers: A promising tool for targeted delivery to the brain. Colloids Surf B Biointerfaces 2020;187:110770. [PMID: 31926790 DOI: 10.1016/j.colsurfb.2019.110770] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
41 Chen J, Jin J, Li K, Shi L, Wen X, Fang F. Progresses and Prospects of Neuroprotective Agents-Loaded Nanoparticles and Biomimetic Material in Ischemic Stroke. Front Cell Neurosci 2022;16:868323. [DOI: 10.3389/fncel.2022.868323] [Reference Citation Analysis]
42 Agrahari V, Burnouf PA, Burnouf T, Agrahari V. Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv Drug Deliv Rev 2019;148:146-80. [PMID: 30797956 DOI: 10.1016/j.addr.2019.02.008] [Cited by in Crossref: 42] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
43 Bahadur S, Sachan N, Harwansh RK, Deshmukh R. Nanoparticlized System: Promising Approach for the Management of Alzheimer's Disease through Intranasal Delivery. Curr Pharm Des 2020;26:1331-44. [PMID: 32160843 DOI: 10.2174/1381612826666200311131658] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
44 Liang X, Wang Y, Shi H, Dong M, Han H, Li Q. Nucleolin-Targeting AS1411 Aptamer-Modified Micelle for the Co-Delivery of Doxorubicin and miR-519c to Improve the Therapeutic Efficacy in Hepatocellular Carcinoma Treatment. Int J Nanomedicine 2021;16:2569-84. [PMID: 33833512 DOI: 10.2147/IJN.S304526] [Reference Citation Analysis]
45 Kumar R, Chhikara BS, Gulia K, Chhillar M. Review of nanotheranostics for molecular mechanisms underlying psychiatric disorders and commensurate nanotherapeutics for neuropsychiatry: The mind knockout. Nanotheranostics 2021;5:288-308. [PMID: 33732601 DOI: 10.7150/ntno.49619] [Reference Citation Analysis]
46 Alexander A, Agrawal M, Bhupal Chougule M, Saraf S, Saraf S. Nose-to-brain drug delivery. Nanopharmaceuticals. Elsevier; 2020. pp. 175-200. [DOI: 10.1016/b978-0-12-817778-5.00009-9] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Wang Y, Tian N, Li C, Hou Y, Wang X, Zhou Q. Incorporation of 7-dehydrocholesterol into liposomes as a simple, universal and efficient way to enhance anticancer activity by combining PDT and photoactivated chemotherapy. Chem Commun 2019;55:14081-4. [DOI: 10.1039/c9cc05691b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Letko Khait N, Ho E, Shoichet MS. Wielding the Double‐Edged Sword of Inflammation: Building Biomaterial‐Based Strategies for Immunomodulation in Ischemic Stroke Treatment. Adv Funct Mater 2021;31:2010674. [DOI: 10.1002/adfm.202010674] [Reference Citation Analysis]
49 Clement S, Campbell JM, Deng W, Guller A, Nisar S, Liu G, Wilson BC, Goldys EM. Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. Adv Sci (Weinh) 2020;7:2003584. [PMID: 33344143 DOI: 10.1002/advs.202003584] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
50 Röder J, Dickmeis C, Commandeur U. Small, Smaller, Nano: New Applications for Potato Virus X in Nanotechnology. Front Plant Sci 2019;10:158. [PMID: 30838013 DOI: 10.3389/fpls.2019.00158] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
51 Yang L. Nano-Hydrogel for the Treatment of Depression and Epilepsy. J Biomed Nanotechnol 2022;18:1097-105. [PMID: 35854439 DOI: 10.1166/jbn.2022.3318] [Reference Citation Analysis]
52 Kalaycioglu GD, Aydogan N. Layer-by-layer coated microcapsules with lipid nanodomains for dual-drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;584:124037. [DOI: 10.1016/j.colsurfa.2019.124037] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
53 Arteaga Cabeza O, Mikrogeorgiou A, Kannan S, Ferriero DM. Advanced nanotherapies to promote neuroregeneration in the injured newborn brain. Adv Drug Deliv Rev 2019;148:19-37. [PMID: 31678359 DOI: 10.1016/j.addr.2019.10.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
54 Sola P, Krishnamurthy P, Chintamaneni PK, Pindiprolu SKS, Kumari M. Novel drug delivery systems of β2 adrenoreceptor agonists to suppress SNCA gene expression and mitochondrial oxidative stress in Parkinson’s disease management. Expert Opinion on Drug Delivery 2020;17:1119-32. [DOI: 10.1080/17425247.2020.1779218] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
55 Gao X, Xu J, Yao T, Liu X, Zhang H, Zhan C. Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Adv Drug Deliv Rev 2022;187:114362. [PMID: 35654215 DOI: 10.1016/j.addr.2022.114362] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Zhang L, Zhu K, Zeng H, Zhang J, Pu Y, Wang Z, Zhang T, Wang B. Resveratrol solid lipid nanoparticles to trigger credible inhibition of doxorubicin cardiotoxicity. Int J Nanomedicine 2019;14:6061-71. [PMID: 31534336 DOI: 10.2147/IJN.S211130] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 5.7] [Reference Citation Analysis]
57 Macchione MA, Sacarelli MF, Racca AC, Biglione C, Panzetta-Dutari GM, Strumia MC. Dual-responsive nanogels based on oligo(ethylene glycol) methacrylates and acidic co-monomers. Soft Matter 2019;15:9700-9. [PMID: 31724683 DOI: 10.1039/c9sm01180c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Yang A, Liu C, Wu J, Kou X, Shen R. A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer's disease. Eur J Pharmacol 2021;897:173950. [PMID: 33607107 DOI: 10.1016/j.ejphar.2021.173950] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
59 Chen Y, Pan Y, Hu D, Peng J, Hao Y, Pan M, Yuan L, Yu Y, Qian Z. Recent progress in nanoformulations of cabazitaxel. Biomed Mater 2021. [PMID: 33545700 DOI: 10.1088/1748-605X/abe396] [Reference Citation Analysis]
60 Shringarpure M, Gharat S, Momin M, Omri A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin Drug Deliv 2021;18:169-85. [PMID: 32921169 DOI: 10.1080/17425247.2021.1823965] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
61 Khatoon R, Alam MA, Sharma PK. Current approaches and prospective drug targeting to brain. Journal of Drug Delivery Science and Technology 2021;61:102098. [DOI: 10.1016/j.jddst.2020.102098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Tang Z, Ma Q, Chen X, Chen T, Ying Y, Xi X, Wang L, Ma C, Shaw C, Zhou M. Recent Advances and Challenges in Nanodelivery Systems for Antimicrobial Peptides (AMPs). Antibiotics (Basel) 2021;10:990. [PMID: 34439040 DOI: 10.3390/antibiotics10080990] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Ouyang Q, Meng Y, Zhou W, Tong J, Cheng Z, Zhu Q. New advances in brain-targeting nano-drug delivery systems for Alzheimer's disease. J Drug Target 2021;:1-21. [PMID: 33983096 DOI: 10.1080/1061186X.2021.1927055] [Reference Citation Analysis]
64 Mujagić A, Marushima A, Nagasaki Y, Hosoo H, Hirayama A, Puentes S, Takahashi T, Tsurushima H, Suzuki K, Matsui H, Ishikawa E, Matsumaru Y, Matsumura A. Antioxidant nanomedicine with cytoplasmic distribution in neuronal cells shows superior neurovascular protection properties. Brain Res 2020;1743:146922. [PMID: 32504549 DOI: 10.1016/j.brainres.2020.146922] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Mehdi-alamdarlou S, Ahmadi F, Azadi A, Shahbazi M, Heidari R, Ashrafi H. A cell-mimicking platelet-based drug delivery system as a potential carrier of dimethyl fumarate for multiple sclerosis. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.122084] [Reference Citation Analysis]
66 Calabrese G, De Luca G, Nocito G, Rizzo MG, Lombardo SP, Chisari G, Forte S, Sciuto EL, Conoci S. Carbon Dots: An Innovative Tool for Drug Delivery in Brain Tumors. Int J Mol Sci 2021;22:11783. [PMID: 34769212 DOI: 10.3390/ijms222111783] [Reference Citation Analysis]
67 Xu J, Khan AR, Fu M, Wang R, Ji J, Zhai G. Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J Control Release 2019;309:106-24. [PMID: 31323244 DOI: 10.1016/j.jconrel.2019.07.020] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 12.0] [Reference Citation Analysis]
68 Su YL, Kuo LW, Hsu CH, Chiang CS, Lu YJ, Chang SJ, Hu SH. Rabies virus glycoprotein-amplified hierarchical targeted hybrids capable of magneto-electric penetration delivery to orthotopic brain tumor. J Control Release 2020;321:159-73. [PMID: 32045622 DOI: 10.1016/j.jconrel.2020.02.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
69 Zhang Y, Zou Z, Liu S, Miao S, Liu H. Nanogels as Novel Nanocarrier Systems for Efficient Delivery of CNS Therapeutics. Front Bioeng Biotechnol 2022;10:954470. [DOI: 10.3389/fbioe.2022.954470] [Reference Citation Analysis]
70 Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021;13:1897. [PMID: 34834311 DOI: 10.3390/pharmaceutics13111897] [Reference Citation Analysis]
71 Xu L, Xu S, Xiang T, Liu H, Chen L, Jiang B, Yao J, Zhu H, Hu R, Chen Z. Multifunctional building elements for the construction of peptide drug conjugates. Engineered Regeneration 2022. [DOI: 10.1016/j.engreg.2022.02.004] [Reference Citation Analysis]
72 Luo Y, Yang H, Zhou YF, Hu B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release 2020;317:195-215. [PMID: 31794799 DOI: 10.1016/j.jconrel.2019.11.037] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
73 Huang R, Zhu Y, Lin L, Song S, Cheng L, Zhu R. Solid Lipid Nanoparticles Enhanced the Neuroprotective Role of Curcumin against Epilepsy through Activation of Bcl-2 Family and P38 MAPK Pathways. ACS Chem Neurosci 2020;11:1985-95. [PMID: 32464055 DOI: 10.1021/acschemneuro.0c00242] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
74 Dai Y, Song Y, Xie J, Xiao G, Li X, Li Z, Gao F, Zhang Y, He E, Xu S, Wang Y, Zheng W, Jiang X, Qi Z, Meng D, Fan Z, Cai X. CB1-Antibody Modified Liposomes for Targeted Modulation of Epileptiform Activities Synchronously Detected by Microelectrode Arrays. ACS Appl Mater Interfaces 2020;12:41148-56. [PMID: 32809788 DOI: 10.1021/acsami.0c13372] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
75 Mccrorie P, Vasey CE, Smith SJ, Marlow M, Alexander C, Rahman R. Biomedical engineering approaches to enhance therapeutic delivery for malignant glioma. Journal of Controlled Release 2020;328:917-31. [DOI: 10.1016/j.jconrel.2020.11.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
76 Gao Y, Almalki WH, Afzal O, Panda SK, Kazmi I, Alrobaian M, Katouah HA, Altamimi ASA, Al-Abbasi FA, Alshehri S, Soni K, Ibrahim IAA, Rahman M, Beg S. Systematic development of lectin conjugated microspheres for nose-to-brain delivery of rivastigmine for the treatment of Alzheimer's disease. Biomed Pharmacother 2021;141:111829. [PMID: 34147904 DOI: 10.1016/j.biopha.2021.111829] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Goutal S, Gerstenmayer M, Auvity S, Caillé F, Mériaux S, Buvat I, Larrat B, Tournier N. Physical blood-brain barrier disruption induced by focused ultrasound does not overcome the transporter-mediated efflux of erlotinib. J Control Release 2018;292:210-20. [PMID: 30415015 DOI: 10.1016/j.jconrel.2018.11.009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]