BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Charbgoo F, Nejabat M, Abnous K, Soltani F, Taghdisi SM, Alibolandi M, Thomas Shier W, Steele TW, Ramezani M. Gold nanoparticle should understand protein corona for being a clinical nanomaterial. Journal of Controlled Release 2018;272:39-53. [DOI: 10.1016/j.jconrel.2018.01.002] [Cited by in Crossref: 73] [Cited by in F6Publishing: 83] [Article Influence: 18.3] [Reference Citation Analysis]
Number Citing Articles
1 Wang W, Zhong Z, Huang Z, Fu F, Wang W, Wu L, Huang Y, Wu C, Pan X. Two different protein corona formation modes on Soluplus® nanomicelles. Colloids Surf B Biointerfaces 2022;218:112744. [PMID: 35932562 DOI: 10.1016/j.colsurfb.2022.112744] [Reference Citation Analysis]
2 Zhou R, Zhang M, Xi J, Li J, Ma R, Ren L, Bai Z, Qi K, Li X. Gold Nanorods-Based Photothermal Therapy: Interactions Between Biostructure, Nanomaterial, and Near-Infrared Irradiation. Nanoscale Res Lett 2022;17:68. [PMID: 35882718 DOI: 10.1186/s11671-022-03706-3] [Reference Citation Analysis]
3 Wang C, Xue M, Liu X, Chen J, Jiang M, Zheng L, Ma R, Ding C, Tao Y, Zhang H, Liu Q, Huo D. Versatile Protein Coronation Approach with Multiple Depleted Serum for Creating Biocompatible, Precision Nanomedicine. Small 2022;:e2202002. [PMID: 35775952 DOI: 10.1002/smll.202202002] [Reference Citation Analysis]
4 Khan S, Sharifi M, Gleghorn JP, Babadaei MMN, Bloukh SH, Edis Z, Amin M, Bai Q, Ten Hagen TLM, Falahati M, Cho WC. Artificial engineering of the protein corona at bio-nano interfaces for improved cancer-targeted nanotherapy. J Control Release 2022:S0168-3659(22)00324-8. [PMID: 35660636 DOI: 10.1016/j.jconrel.2022.05.055] [Reference Citation Analysis]
5 Li X, Guo W, Xu R, Song Z, Ni T. The interaction mechanism between gold nanoparticles and proteins: Lysozyme, trypsin, pepsin, γ-globulin, and hemoglobin. Spectrochim Acta A Mol Biomol Spectrosc 2022;272:120983. [PMID: 35149482 DOI: 10.1016/j.saa.2022.120983] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Arya SS, Rookes JE, Cahill DM, Lenka SK. Reduced Genotoxicity of Gold Nanoparticles With Protein Corona in Allium cepa. Front Bioeng Biotechnol 2022;10:849464. [PMID: 35449594 DOI: 10.3389/fbioe.2022.849464] [Reference Citation Analysis]
7 Kim SH, Lee C, Jang GJ, Yoo S, Lee S, Han SY. Understanding the Biomolecular Coronas of High-Density Lipoproteins on PEGylated Au Nanoparticles: Implication for Lipid Corona Formation in the Blood. ACS Appl Nano Mater 2022;5:2018-28. [DOI: 10.1021/acsanm.1c03752] [Reference Citation Analysis]
8 Zamanian J, Khoshbin Z, Abnous K, Taghdisi SM, Hosseinzadeh H, Danesh NM. Current progress in aptamer-based sensing tools for ultra-low level monitoring of Alzheimer's disease biomarkers. Biosens Bioelectron 2022;197:113789. [PMID: 34798498 DOI: 10.1016/j.bios.2021.113789] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
9 García-álvarez R, Vallet-regí M. Bacteria and cells as alternative nano-carriers for biomedical applications. Expert Opinion on Drug Delivery. [DOI: 10.1080/17425247.2022.2029844] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Lafuente-Gómez N, Latorre A, Milán-Rois P, Rodriguez Diaz C, Somoza Á. Stimuli-responsive nanomaterials for cancer treatment: boundaries, opportunities and applications. Chem Commun (Camb) 2021;57:13662-77. [PMID: 34874370 DOI: 10.1039/d1cc05056g] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
11 Sibuyi NRS, Moabelo KL, Fadaka AO, Meyer S, Onani MO, Madiehe AM, Meyer M. Multifunctional Gold Nanoparticles for Improved Diagnostic and Therapeutic Applications: A Review. Nanoscale Res Lett 2021;16:174. [PMID: 34866165 DOI: 10.1186/s11671-021-03632-w] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
12 Yang H, Lu S, Wang S, Liu L, Zhu B, Yu S, Yang S, Chang J. Evolution of the protein corona affects macrophage polarization. Int J Biol Macromol 2021;191:192-200. [PMID: 34547310 DOI: 10.1016/j.ijbiomac.2021.09.081] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
13 Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select. [DOI: 10.1002/nano.202100255] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
14 Tukova A, Kuschnerus IC, Garcia-Bennett A, Wang Y, Rodger A. Gold Nanostars with Reduced Fouling Facilitate Small Molecule Detection in the Presence of Protein. Nanomaterials (Basel) 2021;11:2565. [PMID: 34685003 DOI: 10.3390/nano11102565] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Morărașu Ș, Iacob Ș, Tudorancea I, Luncă S, Dimofte M. Targeted Chemotherapy Delivery via Gold Nanoparticles: A Scoping Review of In Vivo Studies. Crystals 2021;11:1169. [DOI: 10.3390/cryst11101169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Sharma P, Pandey V, Sharma MMM, Patra A, Singh B, Mehta S, Husen A. A Review on Biosensors and Nanosensors Application in Agroecosystems. Nanoscale Res Lett 2021;16:136. [PMID: 34460019 DOI: 10.1186/s11671-021-03593-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
17 Bolaños K, Sánchez-Navarro M, Tapia-Arellano A, Giralt E, Kogan MJ, Araya E. Oligoarginine Peptide Conjugated to BSA Improves Cell Penetration of Gold Nanorods and Nanoprisms for Biomedical Applications. Pharmaceutics 2021;13:1204. [PMID: 34452165 DOI: 10.3390/pharmaceutics13081204] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Ressnerova A, Novotny F, Michalkova H, Pumera M, Adam V, Heger Z. Efficient Protein Transfection by Swarms of Chemically Powered Plasmonic Virus-Sized Nanorobots. ACS Nano 2021. [PMID: 34282903 DOI: 10.1021/acsnano.1c01172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
19 Yazdian-Robati R, Hedayati N, Dehghani S, Ramezani M, Alibolandi M, Saeedi M, Abnous K, Taghdisi SM. Application of the catalytic activity of gold nanoparticles for development of optical aptasensors. Anal Biochem 2021;629:114307. [PMID: 34273317 DOI: 10.1016/j.ab.2021.114307] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
20 Lorents A, Maloverjan M, Padari K, Pooga M. Internalisation and Biological Activity of Nucleic Acids Delivering Cell-Penetrating Peptide Nanoparticles Is Controlled by the Biomolecular Corona. Pharmaceuticals (Basel) 2021;14:667. [PMID: 34358093 DOI: 10.3390/ph14070667] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Biscaglia F, Caligiuri I, Rizzolio F, Ripani G, Palleschi A, Meneghetti M, Gobbo M. Protection against proteolysis of a targeting peptide on gold nanostructures. Nanoscale 2021;13:10544-54. [PMID: 34100487 DOI: 10.1039/d0nr04631k] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Bolaños K, Celis F, Garrido C, Campos M, Guzmán F, Kogan MJ, Araya E. Adsorption of bovine serum albumin on gold nanoprisms: interaction and effect of NIR irradiation on protein corona. J Mater Chem B 2020;8:8644-57. [PMID: 32842142 DOI: 10.1039/d0tb01246g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
23 Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D. Gold Nanoparticles in Cancer Theranostics. Front Bioeng Biotechnol 2021;9:647905. [PMID: 33928072 DOI: 10.3389/fbioe.2021.647905] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
24 Huang W, Xiao G, Zhang Y, Min W. Research progress and application opportunities of nanoparticle-protein corona complexes. Biomed Pharmacother 2021;139:111541. [PMID: 33848776 DOI: 10.1016/j.biopha.2021.111541] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
25 Erlichman JS, Leiter JC. Complexity of the Nano-Bio Interface and the Tortuous Path of Metal Oxides in Biological Systems. Antioxidants (Basel) 2021;10:547. [PMID: 33915992 DOI: 10.3390/antiox10040547] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Wang W, Huang Z, Li Y, Wang W, Shi J, Fu F, Huang Y, Pan X, Wu C. Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: A proof-of-concept study. Acta Pharm Sin B 2021;11:1030-46. [PMID: 33996415 DOI: 10.1016/j.apsb.2020.10.023] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
27 Zhang T, Tang JZ, Fei X, Li Y, Song Y, Qian Z, Peng Q. Can nanoparticles and nano‒protein interactions bring a bright future for insulin delivery? Acta Pharm Sin B 2021;11:651-67. [PMID: 33777673 DOI: 10.1016/j.apsb.2020.08.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
28 Terracciano R, Zhang A, Butler EB, Demarchi D, Hafner JH, Grattoni A, Filgueira CS. Effects of Surface Protein Adsorption on the Distribution and Retention of Intratumorally Administered Gold Nanoparticles. Pharmaceutics 2021;13:216. [PMID: 33562434 DOI: 10.3390/pharmaceutics13020216] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
29 Tapia-arellano A, Gallardo-toledo E, Ortiz C, Henríquez J, Feijóo CG, Araya E, Sierpe R, Kogan MJ. Functionalization with PEG/Angiopep-2 peptide to improve the delivery of gold nanoprisms to central nervous system: in vitro and in vivo studies. Materials Science and Engineering: C 2021;121:111785. [DOI: 10.1016/j.msec.2020.111785] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
30 Guglielmelli A, Rosa P, Contardi M, Prato M, Mangino G, Miglietta S, Petrozza V, Pani R, Calogero A, Athanassiou A, Perotto G, De Sio L. Biomimetic keratin gold nanoparticle-mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine (Lond) 2021;16:121-38. [PMID: 33426900 DOI: 10.2217/nnm-2020-0349] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
31 Falsafi M, Saljooghi AS, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Smart metal organic frameworks: focus on cancer treatment. Biomater Sci 2021;9:1503-29. [DOI: 10.1039/d0bm01839b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
32 Kopac T. Protein corona, understanding the nanoparticle-protein interactions and future perspectives: A critical review. Int J Biol Macromol 2021;169:290-301. [PMID: 33340622 DOI: 10.1016/j.ijbiomac.2020.12.108] [Cited by in Crossref: 7] [Cited by in F6Publishing: 35] [Article Influence: 3.5] [Reference Citation Analysis]
33 Skalickova S, Horky P, Mlejnkova V, Skladanka J, Hosnedlova B, Ruttkay‐nedecky B, Fernandez C, Kizek R. Theranostic Approach for the Protein Corona of Polysaccharide Nanoparticles. Chem Rec 2021;21:17-28. [DOI: 10.1002/tcr.202000042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
34 Chen Y, Yang J, Fu S, Wu J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine 2020;15:9407-30. [PMID: 33262595 DOI: 10.2147/IJN.S272902] [Cited by in Crossref: 8] [Cited by in F6Publishing: 32] [Article Influence: 4.0] [Reference Citation Analysis]
35 Charbgoo F, Taghdisi SM, Yazdian‐robati R, Abnous K, Ramezani M, Alibolandi M. Aptamer‐Incorporated Nanoparticle Systems for Drug Delivery. In: Rai M, Razzaghi‐abyaneh M, Ingle AP, editors. Nanobiotechnology in Diagnosis, Drug Delivery, and Treatment. Wiley; 2020. pp. 95-112. [DOI: 10.1002/9781119671732.ch5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Wang L, Zhang Y, Li Y, Chen J, Lin W. Recent advances in engineered nanomaterials for acute kidney injury theranostics. Nano Res 2021;14:920-33. [DOI: 10.1007/s12274-020-3067-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
37 Mahmoudi M, Moore A. Implications of Biomolecular Corona for Molecular Imaging. Mol Imaging Biol 2021;23:1-10. [PMID: 33095421 DOI: 10.1007/s11307-020-01559-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
38 Pinheiro T, Ferrão J, Marques AC, Oliveira MJ, Batra NM, Costa PMFJ, Macedo MP, Águas H, Martins R, Fortunato E. Paper-Based In-Situ Gold Nanoparticle Synthesis for Colorimetric, Non-Enzymatic Glucose Level Determination. Nanomaterials (Basel) 2020;10:E2027. [PMID: 33066658 DOI: 10.3390/nano10102027] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
39 Fasoli E. Protein corona: Dr. Jekyll and Mr. Hyde of nanomedicine. Biotechnol Appl Biochem 2020. [PMID: 33007792 DOI: 10.1002/bab.2035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
40 Bromma K, Chithrani DB. Advances in Gold Nanoparticle-Based Combined Cancer Therapy. Nanomaterials (Basel) 2020;10:E1671. [PMID: 32858957 DOI: 10.3390/nano10091671] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
41 Okoampah E, Mao Y, Yang S, Sun S, Zhou C. Gold nanoparticles-biomembrane interactions: From fundamental to simulation. Colloids Surf B Biointerfaces 2020;196:111312. [PMID: 32841786 DOI: 10.1016/j.colsurfb.2020.111312] [Cited by in Crossref: 9] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
42 Apaolaza PS, Busch M, Asin-Prieto E, Peynshaert K, Rathod R, Remaut K, Dünker N, Göpferich A. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: Evaluation of the surface properties and effect on their distribution. Exp Eye Res 2020;198:108151. [PMID: 32721426 DOI: 10.1016/j.exer.2020.108151] [Cited by in Crossref: 11] [Cited by in F6Publishing: 25] [Article Influence: 5.5] [Reference Citation Analysis]
43 Kang MS, Lee SY, Kim KS, Han DW. State of the Art Biocompatible Gold Nanoparticles for Cancer Theragnosis. Pharmaceutics 2020;12:E701. [PMID: 32722426 DOI: 10.3390/pharmaceutics12080701] [Cited by in Crossref: 17] [Cited by in F6Publishing: 40] [Article Influence: 8.5] [Reference Citation Analysis]
44 Yazgan I, Gümüş A, Gökkuş K, Demir MA, Evecen S, Sönmez HA, Miller RM, Bakar F, Oral A, Popov S, Toprak MS. On the Effect of Modified Carbohydrates on the Size and Shape of Gold and Silver Nanostructures. Nanomaterials (Basel) 2020;10:E1417. [PMID: 32708064 DOI: 10.3390/nano10071417] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Khademi Z, Lavaee P, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Co-delivery of doxorubicin and aptamer against Forkhead box M1 using chitosan-gold nanoparticles coated with nucleolin aptamer for synergistic treatment of cancer cells. Carbohydr Polym 2020;248:116735. [PMID: 32919550 DOI: 10.1016/j.carbpol.2020.116735] [Cited by in Crossref: 7] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
46 Yang H, Hao C, Nan Z, Sun R. Bovine hemoglobin adsorption onto modified silica nanoparticles: Multi-spectroscopic measurements based on kinetics and protein conformation. International Journal of Biological Macromolecules 2020;155:208-15. [DOI: 10.1016/j.ijbiomac.2020.03.211] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
47 Yücel O, Şengelen A, Emik S, Önay-uçar E, Arda N, Gürdağ G. Folic acid-modified methotrexate-conjugated gold nanoparticles as nano-sized trojans for drug delivery to folate receptor-positive cancer cells. Nanotechnology 2020;31:355101. [DOI: 10.1088/1361-6528/ab9395] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
48 Zou Q, Chang R, Yan X. Self-Assembling Proteins for Design of Anticancer Nanodrugs. Chem Asian J 2020;15:1405-19. [PMID: 32147947 DOI: 10.1002/asia.202000135] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
49 Swinton DJ, Zhang H, Boroujerdi AFB, Tyree KL, Burke RA, Turner MF, Salia IH, McClary TS. Comparative Analysis of Au and Au@SiO2 Nanoparticle-Protein Interactions for Evaluation as Platforms in Theranostic Applications. ACS Omega 2020;5:6348-57. [PMID: 32258869 DOI: 10.1021/acsomega.9b03716] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Berrecoso G, Crecente-campo J, Alonso MJ. Unveiling the pitfalls of the protein corona of polymeric drug nanocarriers. Drug Deliv and Transl Res 2020;10:730-50. [DOI: 10.1007/s13346-020-00745-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 36] [Article Influence: 12.5] [Reference Citation Analysis]
51 Ma Y, Hong J, Ding Y. Biological Behavior Regulation of Gold Nanoparticles via the Protein Corona. Adv Healthc Mater 2020;9:e1901448. [PMID: 32080976 DOI: 10.1002/adhm.201901448] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
52 Oroojalian F, Charbgoo F, Hashemi M, Amani A, Yazdian-Robati R, Mokhtarzadeh A, Ramezani M, Hamblin MR. Recent advances in nanotechnology-based drug delivery systems for the kidney. J Control Release 2020;321:442-62. [PMID: 32067996 DOI: 10.1016/j.jconrel.2020.02.027] [Cited by in Crossref: 30] [Cited by in F6Publishing: 51] [Article Influence: 15.0] [Reference Citation Analysis]
53 Sloan-Dennison S, Bevins MR, Scarpitti BT, Sauvé VK, Schultz ZD. Protein corona-resistant SERS tags for live cell detection of integrin receptors. Analyst 2019;144:5538-46. [PMID: 31402356 DOI: 10.1039/c9an01056d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
54 Li Z, Wang Y, Zhu J, Zhang Y, Zhang W, Zhou M, Luo C, Li Z, Cai B, Gui S, He Z, Sun J. Emerging well-tailored nanoparticulate delivery system based on in situ regulation of the protein corona. J Control Release 2020;320:1-18. [PMID: 31931050 DOI: 10.1016/j.jconrel.2020.01.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
55 Meesaragandla B, García I, Biedenweg D, Toro-mendoza J, Coluzza I, Liz-marzán LM, Delcea M. H-Bonding-mediated binding and charge reorganization of proteins on gold nanoparticles. Phys Chem Chem Phys 2020;22:4490-500. [DOI: 10.1039/c9cp06371d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
56 Sun Y, Devore D, Ma X, Yuan Y, Kohn J, Qian J. Promotion of dispersion and anticancer efficacy of hydroxyapatite nanoparticles by the adsorption of fetal bovine serum. J Nanopart Res 2019;21. [DOI: 10.1007/s11051-019-4711-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
57 Villanueva-Flores F, Castro-Lugo A, Ramírez OT, Palomares LA. Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices. Nanotechnology 2020;31:132002. [PMID: 31770746 DOI: 10.1088/1361-6528/ab5bc8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 41] [Article Influence: 6.7] [Reference Citation Analysis]
58 Ruan S, Xie R, Qin L, Yu M, Xiao W, Hu C, Yu W, Qian Z, Ouyang L, He Q, Gao H. Aggregable Nanoparticles-Enabled Chemotherapy and Autophagy Inhibition Combined with Anti-PD-L1 Antibody for Improved Glioma Treatment. Nano Lett 2019;19:8318-32. [DOI: 10.1021/acs.nanolett.9b03968] [Cited by in Crossref: 47] [Cited by in F6Publishing: 79] [Article Influence: 15.7] [Reference Citation Analysis]
59 Levin AD, Alenichev MK, Nagaev AI, Drozhzhennikova EB, Grigorenko VG, Andreeva IP, Kostrikina ES. Depolarized dynamic light scattering nanosensing based on aggregation-induced slowing-down of nanoparticles rotational diffusion. Laser Phys Lett 2019;16:106001. [DOI: 10.1088/1612-202x/ab3f9f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
60 Bolaños K, Kogan MJ, Araya E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int J Nanomedicine 2019;14:6387-406. [PMID: 31496693 DOI: 10.2147/IJN.S210992] [Cited by in Crossref: 42] [Cited by in F6Publishing: 59] [Article Influence: 14.0] [Reference Citation Analysis]
61 Raes L, Van Hecke C, Michiels J, Stremersch S, Fraire JC, Brans T, Xiong R, De Smedt S, Vandekerckhove L, Raemdonck K, Braeckmans K. Gold Nanoparticle-Mediated Photoporation Enables Delivery of Macromolecules over a Wide Range of Molecular Weights in Human CD4+ T Cells. Crystals 2019;9:411. [DOI: 10.3390/cryst9080411] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
62 Coglitore D, Janot JM, Balme S. Protein at liquid solid interfaces: Toward a new paradigm to change the approach to design hybrid protein/solid-state materials. Adv Colloid Interface Sci 2019;270:278-92. [PMID: 31306853 DOI: 10.1016/j.cis.2019.07.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
63 Mosquera J, Zhao Y, Jang H, Xie N, Xu C, Kotov NA, Liz‐marzán LM. Plasmonic Nanoparticles with Supramolecular Recognition. Adv Funct Mater 2020;30:1902082. [DOI: 10.1002/adfm.201902082] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 14.0] [Reference Citation Analysis]
64 Chinnathambi S, Karthikeyan S, Hanagata N, Shirahata N. Molecular interaction of silicon quantum dot micelles with plasma proteins: hemoglobin and thrombin. RSC Adv 2019;9:14928-36. [PMID: 35516332 DOI: 10.1039/c9ra02829c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Zuber G, Weiss E, Chiper M. Biocompatible gold nanoclusters: synthetic strategies and biomedical prospects. Nanotechnology 2019;30:352001. [PMID: 31071693 DOI: 10.1088/1361-6528/ab2088] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
66 Renaudin F, Sarda S, Campillo-Gimenez L, Séverac C, Léger T, Charvillat C, Rey C, Lioté F, Camadro JM, Ea HK, Combes C. Adsorption of Proteins on m-CPPD and Urate Crystals Inhibits Crystal-induced Cell Responses: Study on Albumin-crystal Interaction. J Funct Biomater 2019;10:E18. [PMID: 31027151 DOI: 10.3390/jfb10020018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
67 Fuller MA, Köper I. Biomedical applications of polyelectrolyte coated spherical gold nanoparticles. Nano Converg 2019;6:11. [PMID: 31016413 DOI: 10.1186/s40580-019-0183-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
68 Shah AH, Pokholenko O, Nanda HS, Steele TWJ. Non-aqueous, tissue compliant carbene-crosslinking bioadhesives. Mater Sci Eng C Mater Biol Appl 2019;100:215-25. [PMID: 30948055 DOI: 10.1016/j.msec.2019.03.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
69 Mohammadi F, Sahraei A, Li C, Haustrate A, Lehen’kyi V, Barras A, Boukherroub R, Szunerits S. Interaction of Human α-1-Acid Glycoprotein (AGP) with Citrate-Stabilized Gold Nanoparticles: Formation of Unexpectedly Strong Binding Events. J Phys Chem C 2019;123:5073-83. [DOI: 10.1021/acs.jpcc.8b10455] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
70 Wang Y, Li M, Xu X, Tang W, Xiong L, Sun Q. Formation of Protein Corona on Nanoparticles with Digestive Enzymes in Simulated Gastrointestinal Fluids. J Agric Food Chem 2019;67:2296-306. [PMID: 30721043 DOI: 10.1021/acs.jafc.8b05702] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 6.7] [Reference Citation Analysis]
71 Ali ASM, El-halawany MS, Ibrahim SA, Plückthun O, Khalil ASG, Mayer G. Aptasensor for Quantifying Pancreatic Polypeptide. ACS Omega 2019;4:2948-56. [DOI: 10.1021/acsomega.8b03131] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
72 Mosquera J, García I, Henriksen-lacey M, González-rubio G, Liz-marzán LM. Reducing Protein Corona Formation and Enhancing Colloidal Stability of Gold Nanoparticles by Capping with Silica Monolayers. Chem Mater 2019;31:57-61. [DOI: 10.1021/acs.chemmater.8b04647] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
73 Xiao W, Gao H. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. International Journal of Pharmaceutics 2018;552:328-39. [DOI: 10.1016/j.ijpharm.2018.10.011] [Cited by in Crossref: 91] [Cited by in F6Publishing: 120] [Article Influence: 22.8] [Reference Citation Analysis]
74 Matczuk M, Ruzik L, Aleksenko SS, Keppler BK, Jarosz M, Timerbaev AR. Analytical methodology for studying cellular uptake, processing and localization of gold nanoparticles. Anal Chim Acta 2019;1052:1-9. [PMID: 30685026 DOI: 10.1016/j.aca.2018.10.027] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
75 Nosrati R, Dehghani S, Karimi B, Yousefi M, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosensors and Bioelectronics 2018;117:1-14. [DOI: 10.1016/j.bios.2018.05.057] [Cited by in Crossref: 20] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
76 Mosquera J, García I, Liz-Marzán LM. Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Acc Chem Res 2018;51:2305-13. [PMID: 30156826 DOI: 10.1021/acs.accounts.8b00292] [Cited by in Crossref: 164] [Cited by in F6Publishing: 165] [Article Influence: 41.0] [Reference Citation Analysis]
77 Yang D, Deng F, Liu D, He B, He B, Tang X, Zhang Q. The appliances and prospects of aurum nanomaterials in biodiagnostics, imaging, drug delivery and combination therapy. Asian J Pharm Sci 2019;14:349-64. [PMID: 32104465 DOI: 10.1016/j.ajps.2018.06.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
78 Sun Y, Wei J, Wang Z, Meng X. Study on Interaction of G-rich Oligonucleotides Modified Gold Nanoparticles with Cells. Chinese Journal of Analytical Chemistry 2018;46:1357-62. [DOI: 10.1016/s1872-2040(18)61109-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
79 Alibolandi M, Hoseini F, Mohammadi M, Ramezani P, Einafshar E, Taghdisi SM, Ramezani M, Abnous K. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int J Pharm 2018;549:67-75. [PMID: 30048777 DOI: 10.1016/j.ijpharm.2018.07.052] [Cited by in Crossref: 36] [Cited by in F6Publishing: 42] [Article Influence: 9.0] [Reference Citation Analysis]
80 Li MY, Xiao CQ, Xu ZQ, Yin MM, Yang QQ, Yin YL, Liu Y. Role of surface charge on the interaction between carbon nanodots and human serum albumin. Spectrochim Acta A Mol Biomol Spectrosc 2018;204:484-94. [PMID: 29966904 DOI: 10.1016/j.saa.2018.06.082] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
81 Vasti C, Bonnet LV, Galiano MR, Rojas R, Giacomelli CE. Relevance of protein–protein interactions on the biological identity of nanoparticles. Colloids and Surfaces B: Biointerfaces 2018;166:330-8. [DOI: 10.1016/j.colsurfb.2018.03.032] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
82 Bagheri E, Abnous K, Alibolandi M, Ramezani M, Taghdisi SM. Triple-helix molecular switch-based aptasensors and DNA sensors. Biosens Bioelectron 2018;111:1-9. [PMID: 29627731 DOI: 10.1016/j.bios.2018.03.070] [Cited by in Crossref: 33] [Cited by in F6Publishing: 45] [Article Influence: 8.3] [Reference Citation Analysis]
83 Abnous K, Danesh NM, Ramezani M, Taghdisi SM, Emrani AS. A novel colorimetric aptasensor for ultrasensitive detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles. Anal Chim Acta 2018;1020:110-5. [PMID: 29655421 DOI: 10.1016/j.aca.2018.02.066] [Cited by in Crossref: 16] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]