BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huo M, Zhao Y, Satterlee AB, Wang Y, Xu Y, Huang L. Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment. J Control Release 2017;245:81-94. [PMID: 27863995 DOI: 10.1016/j.jconrel.2016.11.013] [Cited by in Crossref: 75] [Cited by in F6Publishing: 83] [Article Influence: 12.5] [Reference Citation Analysis]
Number Citing Articles
1 Guevara ML, Persano F, Persano S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin Cancer Biol 2021;69:238-48. [PMID: 31883449 DOI: 10.1016/j.semcancer.2019.11.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
2 Rodríguez-Cerdeira C, Carnero Gregorio M, López-Barcenas A, Sánchez-Blanco E, Sánchez-Blanco B, Fabbrocini G, Bardhi B, Sinani A, Guzman RA. Advances in Immunotherapy for Melanoma: A Comprehensive Review. Mediators Inflamm 2017;2017:3264217. [PMID: 28848246 DOI: 10.1155/2017/3264217] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 9.4] [Reference Citation Analysis]
3 Cao J, Zheng M, Sun Z, Li Z, Qi X, Shen S. One-Step Fabrication of Multifunctional PLGA-HMME-DTX@MnO2 Nanoparticles for Enhanced Chemo-Sonodynamic Antitumor Treatment. IJN 2022;Volume 17:2577-91. [DOI: 10.2147/ijn.s365570] [Reference Citation Analysis]
4 Xu Y, Liu Y, Liu Q, Lu S, Chen X, Xu W, Shi F. Co-delivery of bufalin and nintedanib via albumin sub-microspheres for synergistic cancer therapy. J Control Release 2021;338:705-18. [PMID: 34481023 DOI: 10.1016/j.jconrel.2021.08.049] [Reference Citation Analysis]
5 Saeed M, Chen F, Ye J, Shi Y, Lammers T, De Geest BG, Xu ZP, Yu H. From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Adv Mater 2021;33:e2008094. [PMID: 34048101 DOI: 10.1002/adma.202008094] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 18.0] [Reference Citation Analysis]
6 Wang J, Hu X, Xiang D. Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines. Drug Deliv 2018;25:1319-27. [PMID: 29869539 DOI: 10.1080/10717544.2018.1477857] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
7 Ansari MA, Chung IM, Rajakumar G, Alzohairy MA, Alomary MN, Thiruvengadam M, Pottoo FH, Ahmad N. Current Nanoparticle Approaches in Nose to Brain Drug Delivery and Anticancer Therapy - A Review. Curr Pharm Des 2020;26:1128-37. [PMID: 31951165 DOI: 10.2174/1381612826666200116153912] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
8 Xu J, Zhao S, Zhang S, Pei J, Li Y, Zhang Y, He X, Hu L. Development of a multivalent acetylcholinesterase inhibitor via dynamic combinatorial chemistry. Int J Biol Macromol 2020;150:1184-91. [PMID: 31758986 DOI: 10.1016/j.ijbiomac.2019.10.127] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
9 Kumar N, Fazal S, Miyako E, Matsumura K, Rajan R. Avengers against cancer: A new era of nano-biomaterial-based therapeutics. Materials Today 2021;51:317-49. [DOI: 10.1016/j.mattod.2021.09.020] [Reference Citation Analysis]
10 Di J, Xie F, Xu Y. When liposomes met antibodies: Drug delivery and beyond. Adv Drug Deliv Rev 2020;154-155:151-62. [PMID: 32926944 DOI: 10.1016/j.addr.2020.09.003] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
11 Miao L, Guo S, Lin CM, Liu Q, Huang L. Nanoformulations for combination or cascade anticancer therapy. Adv Drug Deliv Rev 2017;115:3-22. [PMID: 28624477 DOI: 10.1016/j.addr.2017.06.003] [Cited by in Crossref: 115] [Cited by in F6Publishing: 96] [Article Influence: 23.0] [Reference Citation Analysis]
12 Grimaldi AM, Incoronato M, Salvatore M, Soricelli A. Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics. Nanomedicine (Lond) 2017;12:2349-65. [PMID: 28868980 DOI: 10.2217/nnm-2017-0208] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 7.2] [Reference Citation Analysis]
13 Kang S, Ahn S, Lee J, Kim JY, Choi M, Gujrati V, Kim H, Kim J, Shin E, Jon S. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. Journal of Controlled Release 2017;256:56-67. [DOI: 10.1016/j.jconrel.2017.04.024] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 13.4] [Reference Citation Analysis]
14 He J, Zhong Y, Sun Y, Xie C, Yu T. Construction of an immune-related prognostic model by exploring the tumor microenvironment of clear cell renal cell carcinoma. Anal Biochem 2022;:114567. [PMID: 35122734 DOI: 10.1016/j.ab.2022.114567] [Reference Citation Analysis]
15 Hou L, Yan Y, Tian C, Huang Q, Fu X, Zhang Z, Zhang H, Zhang H, Zhang Z. Single-dose in situ storage for intensifying anticancer efficacy via combinatorial strategy. J Control Release 2020;319:438-49. [PMID: 31926191 DOI: 10.1016/j.jconrel.2020.01.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Al-otaibi JS, Sheena Mary Y, Shyma Mary Y, Aayisha S. DFT Conformational, Wavefunction Based Reactivity Analysis, Docking and MD Simulations of a Carboxamide Derivative with Potential Anticancer Activity. Polycyclic Aromatic Compounds. [DOI: 10.1080/10406638.2022.2032765] [Reference Citation Analysis]
17 Bhatt P, Fnu G, Bhatia D, Shahid A, Sutariya V. Nanodelivery of Resveratrol-Loaded PLGA Nanoparticles for Age-Related Macular Degeneration. AAPS PharmSciTech 2020;21:291. [PMID: 33085055 DOI: 10.1208/s12249-020-01836-4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
18 Wang J, Zhu M, Nie G. Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev 2021;178:113974. [PMID: 34530015 DOI: 10.1016/j.addr.2021.113974] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
19 Duru G, van Egmond M, Heemskerk N. A Window of Opportunity: Targeting Cancer Endothelium to Enhance Immunotherapy. Front Immunol 2020;11:584723. [PMID: 33262763 DOI: 10.3389/fimmu.2020.584723] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Qin T, Xu X, Zhang Z, Li J, You X, Guo H, Sun H, Liu M, Dai Z, Zhu H. Paclitaxel/sunitinib-loaded micelles promote an antitumor response in vitro through synergistic immunogenic cell death for triple-negative breast cancer. Nanotechnology 2020;31:365101. [DOI: 10.1088/1361-6528/ab94dc] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
21 Mahjub R, Jatana S, Lee SE, Qin Z, Pauli G, Soleimani M, Madadi S, Li SD. Recent advances in applying nanotechnologies for cancer immunotherapy. J Control Release 2018;288:239-63. [PMID: 30223043 DOI: 10.1016/j.jconrel.2018.09.010] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 9.3] [Reference Citation Analysis]
22 Peng Y, Bariwal J, Kumar V, Tan C, Mahato RI. Organic Nanocarriers for Delivery and Targeting of Therapeutic Agents for Cancer Treatment. Adv Therap 2020;3:1900136. [DOI: 10.1002/adtp.201900136] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
23 Gao S, Yang D, Fang Y, Lin X, Jin X, Wang Q, Wang X, Ke L, Shi K. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy. Theranostics 2019;9:126-51. [PMID: 30662558 DOI: 10.7150/thno.29431] [Cited by in Crossref: 71] [Cited by in F6Publishing: 78] [Article Influence: 23.7] [Reference Citation Analysis]
24 Liu M, Song W, Huang L. Drug delivery systems targeting tumor-associated fibroblasts for cancer immunotherapy. Cancer Lett 2019;448:31-9. [PMID: 30731107 DOI: 10.1016/j.canlet.2019.01.032] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
25 Nadukkandy AS, Ganjoo E, Singh A, Dinesh Kumar L. Tracing New Landscapes in the Arena of Nanoparticle-Based Cancer Immunotherapy. Front Nanotechnol 2022;4:911063. [DOI: 10.3389/fnano.2022.911063] [Reference Citation Analysis]
26 Daley DK, Myrie SB. Extra-skeletal effects of dietary calcium: Impact on the cardiovascular system, obesity, and cancer. Adv Food Nutr Res 2021;96:1-25. [PMID: 34112350 DOI: 10.1016/bs.afnr.2021.02.012] [Reference Citation Analysis]
27 Zhu P, Hu C, Hui K, Jiang X. The role and significance of VEGFR2+ regulatory T cells in tumor immunity. Onco Targets Ther 2017;10:4315-9. [PMID: 28919780 DOI: 10.2147/OTT.S142085] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
28 Ma Y, Cai L. Next Generation of Cancer Immunotherapy: Targeting the Cancer-Immunity Cycle with Nanotechnology. In: Xu H, Gu N, editors. Nanotechnology in Regenerative Medicine and Drug Delivery Therapy. Singapore: Springer; 2020. pp. 191-253. [DOI: 10.1007/978-981-15-5386-8_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Li M, Zhang F, Su Y, Zhou J, Wang W. Nanoparticles designed to regulate tumor microenvironment for cancer therapy. Life Sci 2018;201:37-44. [PMID: 29577880 DOI: 10.1016/j.lfs.2018.03.044] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
30 Milling L, Zhang Y, Irvine DJ. Delivering safer immunotherapies for cancer. Adv Drug Deliv Rev 2017;114:79-101. [PMID: 28545888 DOI: 10.1016/j.addr.2017.05.011] [Cited by in Crossref: 159] [Cited by in F6Publishing: 149] [Article Influence: 31.8] [Reference Citation Analysis]
31 Sun Y, Li Y, Shi S, Dong C. Exploiting a New Approach to Destroy the Barrier of Tumor Microenvironment: Nano-Architecture Delivery Systems. Molecules 2021;26:2703. [PMID: 34062992 DOI: 10.3390/molecules26092703] [Reference Citation Analysis]
32 Trimaille T, Lacroix C, Verrier B. Self-assembled amphiphilic copolymers as dual delivery system for immunotherapy. Eur J Pharm Biopharm 2019;142:232-9. [PMID: 31229673 DOI: 10.1016/j.ejpb.2019.06.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
33 Hu Q, Huang Z, Duan Y, Fu Z, Bin Liu. Reprogramming Tumor Microenvironment with Photothermal Therapy. Bioconjug Chem 2020;31:1268-78. [PMID: 32271563 DOI: 10.1021/acs.bioconjchem.0c00135] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
34 Bhatt P, Narvekar P, Lalani R, Chougule MB, Pathak Y, Sutariya V. An in vitro Assessment of Thermo-Reversible Gel Formulation Containing Sunitinib Nanoparticles for Neovascular Age-Related Macular Degeneration. AAPS PharmSciTech 2019;20:281. [PMID: 31399890 DOI: 10.1208/s12249-019-1474-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
35 Shams F, Golchin A, Azari A, Mohammadi Amirabad L, Zarein F, Khosravi A, Ardeshirylajimi A. Nanotechnology-based products for cancer immunotherapy. Mol Biol Rep 2021. [PMID: 34716502 DOI: 10.1007/s11033-021-06876-y] [Reference Citation Analysis]
36 Smidova V, Michalek P, Goliasova Z, Eckschlager T, Hodek P, Adam V, Heger Z. Nanomedicine of tyrosine kinase inhibitors. Theranostics 2021;11:1546-67. [PMID: 33408767 DOI: 10.7150/thno.48662] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
37 Hu J, Wei P, Seeberger PH, Yin J. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chem Asian J 2018;13:3448-59. [PMID: 30251341 DOI: 10.1002/asia.201801088] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
38 Kim H, Khanna V, Kucaba TA, Zhang W, Ferguson DM, Griffith TS, Panyam J. Combination of Sunitinib and PD-L1 Blockade Enhances Anticancer Efficacy of TLR7/8 Agonist-Based Nanovaccine. Mol Pharm 2019;16:1200-10. [PMID: 30620878 DOI: 10.1021/acs.molpharmaceut.8b01165] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
39 Shih Y, Peng C, Chiang P, Shieh M. Dual-Functional Polymeric Micelles Co-Loaded with Antineoplastic Drugs and Tyrosine Kinase Inhibitor for Combination Therapy in Colorectal Cancer. Pharmaceutics 2022;14:768. [DOI: 10.3390/pharmaceutics14040768] [Reference Citation Analysis]
40 Liu Q, Das M, Liu Y, Huang L. Targeted drug delivery to melanoma. Adv Drug Deliv Rev 2018;127:208-21. [PMID: 28939379 DOI: 10.1016/j.addr.2017.09.016] [Cited by in Crossref: 72] [Cited by in F6Publishing: 58] [Article Influence: 18.0] [Reference Citation Analysis]
41 Wan Z, Zheng R, Moharil P, Liu Y, Chen J, Sun R, Song X, Ao Q. Polymeric Micelles in Cancer Immunotherapy. Molecules 2021;26:1220. [PMID: 33668746 DOI: 10.3390/molecules26051220] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
42 Zhou Y, Chen X, Cao J, Gao H. Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. J Mater Chem B 2020;8:6765-81. [PMID: 32315375 DOI: 10.1039/d0tb00649a] [Cited by in Crossref: 34] [Cited by in F6Publishing: 16] [Article Influence: 17.0] [Reference Citation Analysis]
43 Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020;181:151-67. [PMID: 32243788 DOI: 10.1016/j.cell.2020.02.001] [Cited by in Crossref: 68] [Cited by in F6Publishing: 72] [Article Influence: 34.0] [Reference Citation Analysis]
44 Yongvongsoontorn N, Chung JE, Gao SJ, Bae KH, Yamashita A, Tan MH, Ying JY, Kurisawa M. Carrier-Enhanced Anticancer Efficacy of Sunitinib-Loaded Green Tea-Based Micellar Nanocomplex beyond Tumor-Targeted Delivery. ACS Nano 2019;13:7591-602. [PMID: 31262169 DOI: 10.1021/acsnano.9b00467] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 9.7] [Reference Citation Analysis]
45 Yang F, Shi K, Jia Y, Hao Y, Peng J, Qian Z. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol Sin 2020;41:911-27. [DOI: 10.1038/s41401-020-0372-z] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
46 Huff AL, Jaffee EM, Zaidi N. Messenger RNA vaccines for cancer immunotherapy: progress promotes promise. J Clin Invest 2022;132:e156211. [PMID: 35289317 DOI: 10.1172/JCI156211] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Shahid A, Bhatt P, Miller A, Sutariya V. Honokiol-Loaded Methoxy Poly (Ethylene Glycol) Polycaprolactone Micelles for the Treatment of Age-Related Macular Degeneration. Assay Drug Dev Technol 2021. [PMID: 34227879 DOI: 10.1089/adt.2021.003] [Reference Citation Analysis]
48 Tran T, Blanc C, Granier C, Saldmann A, Tanchot C, Tartour E. Therapeutic cancer vaccine: building the future from lessons of the past. Semin Immunopathol 2019;41:69-85. [PMID: 29978248 DOI: 10.1007/s00281-018-0691-z] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
49 Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol. 2018;15:310-324. [PMID: 29434333 DOI: 10.1038/nrclinonc.2018.9] [Cited by in Crossref: 168] [Cited by in F6Publishing: 175] [Article Influence: 42.0] [Reference Citation Analysis]
50 Yuba E. Liposome-based immunity-inducing systems for cancer immunotherapy. Molecular Immunology 2018;98:8-12. [DOI: 10.1016/j.molimm.2017.11.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
51 Li H, Ding J, Lu M, Liu H, Miao Y, Li L, Wang G, Zheng J, Pei D, Zhang Q. CAIX-specific CAR-T Cells and Sunitinib Show Synergistic Effects Against Metastatic Renal Cancer Models. J Immunother 2020;43:16-28. [PMID: 31574023 DOI: 10.1097/CJI.0000000000000301] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 19.0] [Reference Citation Analysis]
52 Peng Y, Wen D, Lin F, Mahato RI. Co-delivery of siAlox15 and sunitinib for reversing the new-onset of type 1 diabetes in non-obese diabetic mice. Journal of Controlled Release 2018;292:1-12. [DOI: 10.1016/j.jconrel.2018.10.032] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
53 Li Z, Liu Y, Fang X, Shu Z. Nanomaterials Enhance the Immunomodulatory Effect of Molecular Targeted Therapy. Int J Nanomedicine 2021;16:1631-61. [PMID: 33688183 DOI: 10.2147/IJN.S290346] [Reference Citation Analysis]
54 Martin JD, Cabral H, Stylianopoulos T, Jain RK. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol 2020;17:251-66. [PMID: 32034288 DOI: 10.1038/s41571-019-0308-z] [Cited by in Crossref: 125] [Cited by in F6Publishing: 112] [Article Influence: 62.5] [Reference Citation Analysis]
55 Phuengkham H, Ren L, Shin IW, Lim YT. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy. Adv Mater 2019;31:e1803322. [PMID: 30773696 DOI: 10.1002/adma.201803322] [Cited by in Crossref: 105] [Cited by in F6Publishing: 90] [Article Influence: 35.0] [Reference Citation Analysis]
56 Zhu Y, Yu X, Thamphiwatana SD, Zheng Y, Pang Z. Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy. Acta Pharm Sin B 2020;10:2054-74. [PMID: 33304779 DOI: 10.1016/j.apsb.2020.08.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 15.0] [Reference Citation Analysis]
57 Wan Z, Sun J, Xu J, Moharil P, Chen J, Xu J, Zhu J, Li J, Huang Y, Xu P, Ma X, Xie W, Lu B, Li S. Dual functional immunostimulatory polymeric prodrug carrier with pendent indoximod for enhanced cancer immunochemotherapy. Acta Biomater 2019;90:300-13. [PMID: 30930305 DOI: 10.1016/j.actbio.2019.03.048] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 11.7] [Reference Citation Analysis]
58 Poggi A, Varesano S, Zocchi MR. How to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive. Front Immunol 2018;9:262. [PMID: 29515580 DOI: 10.3389/fimmu.2018.00262] [Cited by in Crossref: 44] [Cited by in F6Publishing: 52] [Article Influence: 11.0] [Reference Citation Analysis]
59 Zhu H, Liu Q, Miao L, Musetti S, Huo M, Huang L. Remodeling the fibrotic tumor microenvironment of desmoplastic melanoma to facilitate vaccine immunotherapy. Nanoscale 2020;12:3400-10. [PMID: 31989142 DOI: 10.1039/c9nr09610h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
60 Xu J, Zhang S, Zhao S, Hu L. Identification and synthesis of an efficient multivalent E. coli heat labile toxin inhibitor __ A dynamic combinatorial chemistry approach. Bioorganic & Medicinal Chemistry 2020;28:115436. [DOI: 10.1016/j.bmc.2020.115436] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 De Jaeghere EA, Denys HG, De Wever O. Fibroblasts Fuel Immune Escape in the Tumor Microenvironment. Trends Cancer 2019;5:704-23. [PMID: 31735289 DOI: 10.1016/j.trecan.2019.09.009] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 13.0] [Reference Citation Analysis]
62 Dai X, Ren L, Liu M, Cai H, Zhang H, Gong Q, Gu Z, Luo K. Nanomedicines modulating myeloid-derived suppressor cells for improving cancer immunotherapy. Nano Today 2021;39:101163. [DOI: 10.1016/j.nantod.2021.101163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Yang Z, Ma Y, Zhao H, Yuan Y, Kim BYS. Nanotechnology platforms for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1590. [PMID: 31696664 DOI: 10.1002/wnan.1590] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
64 Jin G, Li Z, Xiao F, Qi X, Sun X. Optimization of activity localization of quinoline derivatives: Design, synthesis, and dual evaluation of biological activity for potential antitumor and antibacterial agents. Bioorganic Chemistry 2020;99:103837. [DOI: 10.1016/j.bioorg.2020.103837] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
65 Kong X, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. Nano Today 2021;36:101004. [DOI: 10.1016/j.nantod.2020.101004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
66 Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv Healthc Mater 2019;8:e1801320. [PMID: 30666822 DOI: 10.1002/adhm.201801320] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
67 Gener P, Gonzalez Callejo P, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Schwartz S Jr. The potential of nanomedicine to alter cancer stem cell dynamics: the impact of extracellular vesicles. Nanomedicine (Lond) 2020;15:2785-800. [PMID: 33191837 DOI: 10.2217/nnm-2020-0099] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Lin X, Wang X, Gu Q, Lei D, Liu X, Yao C. Emerging nanotechnological strategies to reshape tumor microenvironment for enhanced therapeutic outcomes of cancer immunotherapy. Biomed Mater 2021. [PMID: 33601351 DOI: 10.1088/1748-605X/abe7b3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Yoo J, Park C, Yi G, Lee D, Koo H. Active Targeting Strategies Using Biological Ligands for Nanoparticle Drug Delivery Systems. Cancers (Basel) 2019;11:E640. [PMID: 31072061 DOI: 10.3390/cancers11050640] [Cited by in Crossref: 152] [Cited by in F6Publishing: 112] [Article Influence: 50.7] [Reference Citation Analysis]
70 Zhang X, Zhang Y, Zheng H, He Y, Jia H, Zhang L, Lin C, Chen S, Zheng J, Yang Q, Liu T, Pan X, Zhang H, Wang C, Ren L, Shan W. In Situ biomimetic Nanoformulation for metastatic cancer immunotherapy. Acta Biomater 2021;134:633-48. [PMID: 34329780 DOI: 10.1016/j.actbio.2021.07.055] [Reference Citation Analysis]
71 Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer 2021;20:41. [PMID: 33632261 DOI: 10.1186/s12943-021-01335-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
72 Wang X, He L, Wei B, Yan G, Wang J, Tang R. Bromelain-immobilized and lactobionic acid-modified chitosan nanoparticles for enhanced drug penetration in tumor tissues. International Journal of Biological Macromolecules 2018;115:129-42. [DOI: 10.1016/j.ijbiomac.2018.04.076] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
73 Li W, Zhan M, Quan Y, Wang H, Hua S, Li Y, Zhang J, Lu L, Cui M. Modulating the tumor immune microenvironment with sunitinib malate supports the rationale for combined treatment with immunotherapy. International Immunopharmacology 2020;81:106227. [DOI: 10.1016/j.intimp.2020.106227] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
74 Xu J, Tian K, Zhang H, Li L, Liu H, Liu J, Zhang Q, Zheng J. Chimeric antigen receptor-T cell therapy for solid tumors require new clinical regimens. Expert Rev Anticancer Ther 2017;17:1099-106. [PMID: 29048935 DOI: 10.1080/14737140.2017.1395285] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
75 Ahmad MZ, Ahmad J, Haque A, Alasmary MY, Abdel-wahab BA, Akhter S. Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Expert Review of Vaccines 2020;19:1053-71. [DOI: 10.1080/14760584.2020.1858058] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Wang Z, Liu W, Shi J, Chen N, Fan C. Nanoscale delivery systems for cancer immunotherapy. Mater Horiz 2018;5:344-62. [DOI: 10.1039/c7mh00991g] [Cited by in Crossref: 37] [Article Influence: 9.3] [Reference Citation Analysis]
77 Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. Nat Rev Mater 2021;6:351-70. [DOI: 10.1038/s41578-020-00269-6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 21.0] [Reference Citation Analysis]
78 Cherri M, Ferraro M, Mohammadifar E, Quaas E, Achazi K, Ludwig K, Grötzinger C, Schirner M, Haag R. Biodegradable Dendritic Polyglycerol Sulfate for the Delivery and Tumor Accumulation of Cytostatic Anticancer Drugs. ACS Biomater Sci Eng 2021;7:2569-79. [PMID: 34061498 DOI: 10.1021/acsbiomaterials.1c00439] [Reference Citation Analysis]
79 Tan HY, Wang N, Lam W, Guo W, Feng Y, Cheng YC. Targeting tumour microenvironment by tyrosine kinase inhibitor. Mol Cancer 2018;17:43. [PMID: 29455663 DOI: 10.1186/s12943-018-0800-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 10.5] [Reference Citation Analysis]
80 Lai X, Liu XL, Pan H, Zhu MH, Long M, Yuan Y, Zhang Z, Dong X, Lu Q, Sun P, Lovell JF, Chen HZ, Fang C. Light-Triggered Efficient Sequential Drug Delivery of Biomimetic Nanosystem for Multimodal Chemo-, Antiangiogenic, and Anti-MDSC Therapy in Melanoma. Adv Mater 2022;34:e2106682. [PMID: 34989039 DOI: 10.1002/adma.202106682] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
81 Jiang M, He K, Qiu T, Sun J, Liu Q, Zhang X, Zheng H. Tumor-targeted delivery of silibinin and IPI-549 synergistically inhibit breast cancer by remodeling the microenvironment. Int J Pharm 2020;581:119239. [PMID: 32194211 DOI: 10.1016/j.ijpharm.2020.119239] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
82 Bai Y, Wang Y, Zhang X, Fu J, Xing X, Wang C, Gao L, Liu Y, Shi L. Potential applications of nanoparticles for tumor microenvironment remodeling to ameliorate cancer immunotherapy. Int J Pharm 2019;570:118636. [PMID: 31446027 DOI: 10.1016/j.ijpharm.2019.118636] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
83 Chu D, Dong X, Shi X, Zhang C, Wang Z. Neutrophil-Based Drug Delivery Systems. Adv Mater 2018;30:e1706245. [PMID: 29577477 DOI: 10.1002/adma.201706245] [Cited by in Crossref: 121] [Cited by in F6Publishing: 106] [Article Influence: 30.3] [Reference Citation Analysis]
84 Qu D, Guo M, Qin Y, Wang L, Zong B, Chen Y, Chen Y. A multicomponent microemulsion using rational combination strategy improves lung cancer treatment through synergistic effects and deep tumor penetration. Drug Deliv 2017;24:1179-90. [PMID: 28841044 DOI: 10.1080/10717544.2017.1365394] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
85 Liu X, Wu F, Ji Y, Yin L. Recent Advances in Anti-cancer Protein/Peptide Delivery. Bioconjugate Chem 2019;30:305-24. [DOI: 10.1021/acs.bioconjchem.8b00750] [Cited by in Crossref: 52] [Cited by in F6Publishing: 44] [Article Influence: 13.0] [Reference Citation Analysis]
86 Mou L, Tian X, Zhou B, Zhan Y, Chen J, Lu Y, Deng J, Deng Y, Wu Z, Li Q, Song Y, Zhang H, Chen J, Tian K, Ni Y, Pu Z. Improving Outcomes of Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma: New Data and Ongoing Trials. Front Oncol 2021;11:752725. [PMID: 34707994 DOI: 10.3389/fonc.2021.752725] [Reference Citation Analysis]
87 Chang J, Mo L, Song J, Wang X, Liu H, Meng C, Wu Y. A pH-responsive mesoporous silica nanoparticle-based drug delivery system for targeted breast cancer therapy. J Mater Chem B 2022. [PMID: 35388835 DOI: 10.1039/d1tb02828f] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
88 Gao S, Yang X, Xu J, Qiu N, Zhai G. Nanotechnology for Boosting Cancer Immunotherapy and Remodeling Tumor Microenvironment: The Horizons in Cancer Treatment. ACS Nano 2021. [PMID: 34339170 DOI: 10.1021/acsnano.1c02103] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 18.0] [Reference Citation Analysis]
89 Mahadik N, Bhattacharya D, Padmanabhan A, Sakhare K, Narayan KP, Banerjee R. Targeting steroid hormone receptors for anti-cancer therapy-A review on small molecules and nanotherapeutic approaches. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1755. [PMID: 34541822 DOI: 10.1002/wnan.1755] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021;11:1779-805. [PMID: 33095384 DOI: 10.1007/s13346-020-00863-9] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
91 Sun B, Hyun H, Li LT, Wang AZ. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacol Sin 2020;41:970-85. [PMID: 32424240 DOI: 10.1038/s41401-020-0424-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
92 Song X, Jiang Y, Zhang W, Elfawal G, Wang K, Jiang D, Hong H, Wu J, He C, Mo X, Wang H. Transcutaneous tumor vaccination combined with anti-programmed death-1 monoclonal antibody treatment produces a synergistic antitumor effect. Acta Biomater 2022;140:247-60. [PMID: 34843953 DOI: 10.1016/j.actbio.2021.11.033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
93 Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 2017;14:228-41. [PMID: 28884040 DOI: 10.20892/j.issn.2095-3941.2017.0052] [Cited by in Crossref: 122] [Cited by in F6Publishing: 94] [Article Influence: 24.4] [Reference Citation Analysis]
94 Zhao S, Xu J, Zhang S, Han M, Wu Y, Li Y, Hu L. Multivalent butyrylcholinesterase inhibitor discovered by exploiting dynamic combinatorial chemistry. Bioorg Chem 2021;108:104656. [PMID: 33548731 DOI: 10.1016/j.bioorg.2021.104656] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
95 Xu X, Wu Y, Qian X, Wang Y, Wang J, Li J, Li Y, Zhang Z. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy. Adv Healthc Mater 2022;11:e2101428. [PMID: 34706400 DOI: 10.1002/adhm.202101428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
96 Feng C, Zhang H, Chen J, Wang S, Xin Y, Qu Y, Zhang Q, Ji W, Yamashita F, Rui M, Xu X. Ratiometric co-encapsulation and co-delivery of doxorubicin and paclitaxel by tumor-targeted lipodisks for combination therapy of breast cancer. Int J Pharm 2019;560:191-204. [PMID: 30769131 DOI: 10.1016/j.ijpharm.2019.02.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]