BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bayer EA, Gottardi R, Fedorchak MV, Little SR. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration. J Control Release 2015;219:129-40. [PMID: 26264834 DOI: 10.1016/j.jconrel.2015.08.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 46] [Article Influence: 5.9] [Reference Citation Analysis]
Number Citing Articles
1 Awale GM, Barajaa MA, Kan H, Lo KW, Laurencin CT. Single-Dose Induction of Osteogenic Differentiation of Mesenchymal Stem Cells Using a Cyclic AMP Activator, Forskolin. Regen Eng Transl Med . [DOI: 10.1007/s40883-022-00262-1] [Reference Citation Analysis]
2 Wu Y, Rakotoarisoa M, Angelov B, Deng Y, Angelova A. Self-Assembled Nanoscale Materials for Neuronal Regeneration: A Focus on BDNF Protein and Nucleic Acid Biotherapeutic Delivery. Nanomaterials 2022;12:2267. [DOI: 10.3390/nano12132267] [Reference Citation Analysis]
3 Arrizabalaga JH, Smallcomb M, Abu-Laban M, Liu Y, Yeingst TJ, Dhawan A, Simon JC, Hayes DJ. Ultrasound-Responsive Hydrogels for On-Demand Protein Release. ACS Appl Bio Mater 2022. [PMID: 35700312 DOI: 10.1021/acsabm.2c00192] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Behrens C, Kauffmann P, von Hahn N, Giesecke A, Schirmer U, Liefeith K, Schliephake H. Development of a system of heparin multilayers on titanium surfaces for dual growth factor release. J Biomed Mater Res A 2022. [PMID: 35593380 DOI: 10.1002/jbm.a.37411] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Maji S, Lee H. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. Int J Mol Sci 2022;23:2662. [PMID: 35269803 DOI: 10.3390/ijms23052662] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
6 Zhou X, Chen J, Sun H, Wang F, Wang Y, Zhang Z, Teng W, Ye Y, Huang D, Zhang W, Mo X, Liu A, Lin P, Wu Y, Tao H, Yu X, Ye Z. Spatiotemporal regulation of angiogenesis/osteogenesis emulating natural bone healing cascade for vascularized bone formation. J Nanobiotechnology 2021;19:420. [PMID: 34906152 DOI: 10.1186/s12951-021-01173-z] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Xia P, Luo Y. Vascularization in tissue engineering: The architecture cues of pores in scaffolds. J Biomed Mater Res B Appl Biomater 2021. [PMID: 34860454 DOI: 10.1002/jbm.b.34979] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C Mater Biol Appl 2021;130:112466. [PMID: 34702541 DOI: 10.1016/j.msec.2021.112466] [Cited by in Crossref: 1] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
9 Krieghoff J, Gronbach M, Schulz-Siegmund M, Hacker MC. Biodegradable macromers for implant bulk and surface engineering. Biol Chem 2021;402:1357-74. [PMID: 34433237 DOI: 10.1515/hsz-2021-0161] [Reference Citation Analysis]
10 Luo R, Huang Y, Yuan X, Yuan Z, Zhang L, Han J, Zhao Y, Cai Q. Controlled co-delivery system of magnesium and lanthanum ions for vascularized bone regeneration. Biomed Mater 2021;16. [PMID: 34544058 DOI: 10.1088/1748-605X/ac2886] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
11 Chu W, Nie M, Ke X, Luo J, Li J. Recent Advances in Injectable Dual Crosslinking Hydrogels for Biomedical Applications. Macromol Biosci 2021;21:e2100109. [PMID: 33908175 DOI: 10.1002/mabi.202100109] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
12 Busch A, Jäger M, Mayer C, Sowislok A. Functionalization of Synthetic Bone Substitutes. Int J Mol Sci 2021;22:4412. [PMID: 33922517 DOI: 10.3390/ijms22094412] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
13 Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021;6:4110-40. [PMID: 33997497 DOI: 10.1016/j.bioactmat.2021.03.043] [Cited by in Crossref: 5] [Cited by in F6Publishing: 41] [Article Influence: 5.0] [Reference Citation Analysis]
14 Andrée L, Yang F, Brock R, Leeuwenburgh SCG. Designing biomaterials for the delivery of RNA therapeutics to stimulate bone healing. Mater Today Bio 2021;10:100105. [PMID: 33912824 DOI: 10.1016/j.mtbio.2021.100105] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Cheah E, Wu Z, Thakur SS, O'Carroll SJ, Svirskis D. Externally triggered release of growth factors - A tissue regeneration approach. J Control Release 2021;332:74-95. [PMID: 33600882 DOI: 10.1016/j.jconrel.2021.02.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
16 Nájera-romero GV, Yar M, Rehman IU. Heparinized chitosan/hydroxyapatite scaffolds stimulate angiogenesis. Functional Composite Mater 2020;1. [DOI: 10.1186/s42252-020-00012-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
17 Komarova EG, Sharkeev YP, Sedelnikova MB, Prymak O, Epple M, Litvinova LS, Shupletsova VV, Malashchenko VV, Yurova KA, Dzyuman AN, Kulagina IV, Mushtovatova LS, Bochkareva OP, Karpova MR, Khlusov IA. Zn- or Cu-containing CaP-Based Coatings Formed by Micro-Arc Oxidation on Titanium and Ti-40Nb Alloy: Part II-Wettability and Biological Performance. Materials (Basel) 2020;13:E4366. [PMID: 33008055 DOI: 10.3390/ma13194366] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
18 Menger MM, Laschke MW, Orth M, Pohlemann T, Menger MD, Histing T. Vascularization Strategies in the Prevention of Nonunion Formation. Tissue Eng Part B Rev 2021;27:107-32. [PMID: 32635857 DOI: 10.1089/ten.TEB.2020.0111] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
19 Mu Z, Chen K, Yuan S, Li Y, Huang Y, Wang C, Zhang Y, Liu W, Luo W, Liang P, Li X, Song J, Ji P, Cheng F, Wang H, Chen T. Gelatin Nanoparticle-Injectable Platelet-Rich Fibrin Double Network Hydrogels with Local Adaptability and Bioactivity for Enhanced Osteogenesis. Adv Healthc Mater 2020;9:e1901469. [PMID: 31994326 DOI: 10.1002/adhm.201901469] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
20 Fang H, Luo C, Liu S, Zhou M, Zeng Y, Hou J, Chen L, Mou S, Sun J, Wang Z. A biocompatible vascularized graphene oxide (GO)-collagen chamber with osteoinductive and anti-fibrosis effects promotes bone regeneration in vivo. Theranostics 2020;10:2759-72. [PMID: 32194833 DOI: 10.7150/thno.42006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
21 Casanova MR, Oliveira C, Fernandes EM, Reis RL, Silva TH, Martins A, Neves NM. Spatial immobilization of endogenous growth factors to control vascularization in bone tissue engineering. Biomater Sci 2020;8:2577-89. [DOI: 10.1039/d0bm00087f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
22 Li S, Song C, Yang S, Yu W, Zhang W, Zhang G, Xi Z, Lu E. Supercritical CO2 foamed composite scaffolds incorporating bioactive lipids promote vascularized bone regeneration via Hif-1α upregulation and enhanced type H vessel formation. Acta Biomater 2019;94:253-67. [PMID: 31154054 DOI: 10.1016/j.actbio.2019.05.066] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 10.7] [Reference Citation Analysis]
23 Ji L, Song Z, Zeng F, Hu M, Chen S, Qin Z, Xia D. [Research progress on controlled release of various growth factors in bone regeneration]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2019;33:750-5. [PMID: 31198005 DOI: 10.7507/1002-1892.201901116] [Reference Citation Analysis]
24 Elias CMV, Maia Filho ALM, Silva LRD, Amaral FPMD, Webster TJ, Marciano FR, Lobo AO. In Vivo Evaluation of the Genotoxic Effects of Poly (Butylene adipate-co-terephthalate)/Polypyrrole with Nanohydroxyapatite Scaffolds for Bone Regeneration. Materials (Basel) 2019;12:E1330. [PMID: 31022828 DOI: 10.3390/ma12081330] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
25 Zhao Q, Wang M. Manipulating the release of growth factors from biodegradable microspheres for potentially different therapeutic effects by using two different electrospray techniques for microsphere fabrication. Polymer Degradation and Stability 2019;162:169-79. [DOI: 10.1016/j.polymdegradstab.2019.02.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
26 Ansari S, Khorshidi S, Karkhaneh A. Engineering of gradient osteochondral tissue: From nature to lab. Acta Biomater 2019;87:41-54. [PMID: 30721785 DOI: 10.1016/j.actbio.2019.01.071] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 17.3] [Reference Citation Analysis]
27 Dou D, Zhou G, Liu H, Zhang J, Liu M, Xiao X, Fei J, Guan X, Fan Y. Sequential releasing of VEGF and BMP-2 in hydroxyapatite collagen scaffolds for bone tissue engineering: Design and characterization. International Journal of Biological Macromolecules 2019;123:622-8. [DOI: 10.1016/j.ijbiomac.2018.11.099] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]
28 Koons GL, Mikos AG. Progress in three-dimensional printing with growth factors. J Control Release 2019;295:50-9. [PMID: 30579982 DOI: 10.1016/j.jconrel.2018.12.035] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
29 Zhang Y, Yang W, Devit A, van den Beucken JJJP. Efficiency of coculture with angiogenic cells or physiological BMP-2 administration on improving osteogenic differentiation and bone formation of MSCs. J Biomed Mater Res A 2019;107:643-53. [PMID: 30458064 DOI: 10.1002/jbm.a.36581] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
30 Bao XG, Shi MC, Hou CL, Xu GH. Recent Progress in the Construction of Functional Artificial Bone by Cytokine-Controlled Strategies. Chin Med J (Engl) 2018;131:2599-604. [PMID: 30381594 DOI: 10.4103/0366-6999.244105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
31 Bittner SM, Guo JL, Mikos AG. Spatiotemporal Control of Growth Factors in Three-Dimensional Printed Scaffolds. Bioprinting 2018;12:e00032. [PMID: 31106279 DOI: 10.1016/j.bprint.2018.e00032] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 8.0] [Reference Citation Analysis]
32 Shi R, Huang Y, Ma C, Wu C, Tian W. Current advances for bone regeneration based on tissue engineering strategies. Front Med 2019;13:160-88. [PMID: 30047029 DOI: 10.1007/s11684-018-0629-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
33 Pirosa A, Gottardi R, Alexander PG, Tuan RS. Engineering in-vitro stem cell-based vascularized bone models for drug screening and predictive toxicology. Stem Cell Res Ther 2018;9:112. [PMID: 29678192 DOI: 10.1186/s13287-018-0847-8] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 9.0] [Reference Citation Analysis]
34 Mittwede PN, Gottardi R, Alexander PG, Tarkin IS, Tuan RS. Clinical Applications of Bone Tissue Engineering in Orthopedic Trauma. Curr Pathobiol Rep 2018;6:99-108. [DOI: 10.1007/s40139-018-0166-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
35 Ball AN, Donahue SW, Wojda SJ, McIlwraith CW, Kawcak CE, Ehrhart N, Goodrich LR. The challenges of promoting osteogenesis in segmental bone defects and osteoporosis. J Orthop Res 2018;36:1559-72. [PMID: 29280510 DOI: 10.1002/jor.23845] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
36 Moser N, Goldstein J, Kauffmann P, Epple M, Schliephake H. Experimental variation of the level and the ratio of angiogenic and osteogenic signaling affects the spatiotemporal expression of bone-specific markers and organization of bone formation in ectopic sites. Clin Oral Invest 2018;22:1223-34. [DOI: 10.1007/s00784-017-2202-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
37 Bao X, Zhu L, Huang X, Tang D, He D, Shi J, Xu G. 3D biomimetic artificial bone scaffolds with dual-cytokines spatiotemporal delivery for large weight-bearing bone defect repair. Sci Rep 2017;7:7814. [PMID: 28798376 DOI: 10.1038/s41598-017-08412-0] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
38 Marcucio RS, Qin L, Alsberg E, Boerckel JD. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering. J Orthop Res 2017;35:2356-68. [PMID: 28660712 DOI: 10.1002/jor.23636] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
39 Bayer EA, Jordan J, Roy A, Gottardi R, Fedorchak MV, Kumta PN, Little SR. * Programmed Platelet-Derived Growth Factor-BB and Bone Morphogenetic Protein-2 Delivery from a Hybrid Calcium Phosphate/Alginate Scaffold. Tissue Eng Part A 2017;23:1382-93. [PMID: 28537482 DOI: 10.1089/ten.TEA.2017.0027] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 4.6] [Reference Citation Analysis]
40 Maisani M, Pezzoli D, Chassande O, Mantovani D. Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment? J Tissue Eng 2017;8:2041731417712073. [PMID: 28634532 DOI: 10.1177/2041731417712073] [Cited by in Crossref: 42] [Cited by in F6Publishing: 53] [Article Influence: 8.4] [Reference Citation Analysis]
41 Bolbasov E, Popkov A, Popkov D, Gorbach E, Khlusov I, Golovkin A, Sinev A, Bouznik V, Tverdokhlebov S, Anissimov Y. Osteoinductive composite coatings for flexible intramedullary nails. Materials Science and Engineering: C 2017;75:207-20. [DOI: 10.1016/j.msec.2017.02.073] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
42 Chen R, Cai X, Ma K, Zhou Y, Wang Y, Jiang T. The fabrication of double-layered chitosan/gelatin/genipin nanosphere coating for sequential and controlled release of therapeutic proteins. Biofabrication 2017;9:025028. [DOI: 10.1088/1758-5090/aa70c3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
43 Zhou G, Zhang J, Tai J, Han Q, Wang L, Wang K, Wang S, Fan Y. Comparison of chitosan microsphere versus O-carboxymethyl chitosan microsphere for drug delivery systems. Journal of Bioactive and Compatible Polymers 2017;32:469-86. [DOI: 10.1177/0883911517690757] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
44 Sun AX, Numpaisal P, Gottardi R, Shen H, Yang G, Tuan RS. Cell and Biomimetic Scaffold-Based Approaches for Cartilage Regeneration. Operative Techniques in Orthopaedics 2016;26:135-46. [DOI: 10.1053/j.oto.2016.06.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
45 Malheiro A, Wieringa P, Mota C, Baker M, Moroni L. Patterning Vasculature: The Role of Biofabrication to Achieve an Integrated Multicellular Ecosystem. ACS Biomater Sci Eng 2016;2:1694-709. [DOI: 10.1021/acsbiomaterials.6b00269] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
46 Tozzi G, De Mori A, Oliveira A, Roldo M. Composite Hydrogels for Bone Regeneration. Materials (Basel) 2016;9:E267. [PMID: 28773392 DOI: 10.3390/ma9040267] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 12.5] [Reference Citation Analysis]