BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wilems TS, Sakiyama-Elbert SE. Sustained dual drug delivery of anti-inhibitory molecules for treatment of spinal cord injury. J Control Release 2015;213:103-11. [PMID: 26122130 DOI: 10.1016/j.jconrel.2015.06.031] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Guijarro-Belmar A, Viskontas M, Wei Y, Bo X, Shewan D, Huang W. Epac2 Elevation Reverses Inhibition by Chondroitin Sulfate Proteoglycans In Vitro and Transforms Postlesion Inhibitory Environment to Promote Axonal Outgrowth in an Ex Vivo Model of Spinal Cord Injury. J Neurosci 2019;39:8330-46. [PMID: 31409666 DOI: 10.1523/JNEUROSCI.0374-19.2019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
2 Führmann T, Anandakumaran PN, Shoichet MS. Combinatorial Therapies After Spinal Cord Injury: How Can Biomaterials Help? Adv Healthc Mater 2017;6. [PMID: 28247563 DOI: 10.1002/adhm.201601130] [Cited by in Crossref: 75] [Cited by in F6Publishing: 74] [Article Influence: 15.0] [Reference Citation Analysis]
3 Ziemba AM, Gilbert RJ. Biomaterials for Local, Controlled Drug Delivery to the Injured Spinal Cord. Front Pharmacol 2017;8:245. [PMID: 28539887 DOI: 10.3389/fphar.2017.00245] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 9.2] [Reference Citation Analysis]
4 Eroğlu H, Haidar MK, Nemutlu E, Öztürk Ş, Bayram C, Ulubayram K, Öner L. Dual release behavior of atorvastatin and alpha-lipoic acid from PLGA microspheres for the combination therapy in peripheral nerve injury. Journal of Drug Delivery Science and Technology 2017;39:455-66. [DOI: 10.1016/j.jddst.2017.04.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
5 Hettiaratchi MH, O'meara MJ, Teal CJ, Payne SL, Pickering AJ, Shoichet MS. Local delivery of stabilized chondroitinase ABC degrades chondroitin sulfate proteoglycans in stroke-injured rat brains. Journal of Controlled Release 2019;297:14-25. [DOI: 10.1016/j.jconrel.2019.01.033] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
6 Willerth SM. Biomimetic strategies for replicating the neural stem cell niche. Current Opinion in Chemical Engineering 2017;15:8-14. [DOI: 10.1016/j.coche.2016.11.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
7 Iyer NR, Wilems TS, Sakiyama-Elbert SE. Stem cells for spinal cord injury: Strategies to inform differentiation and transplantation. Biotechnol Bioeng 2017;114:245-59. [PMID: 27531038 DOI: 10.1002/bit.26074] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
8 Rezaei S, Dabirmanesh B, Zare L, Golestani A, Javan M, Khajeh K. Enhancing myelin repair in experimental model of multiple sclerosis using immobilized chondroitinase ABC I on porous silicon nanoparticles. Int J Biol Macromol 2020;146:162-70. [PMID: 31899243 DOI: 10.1016/j.ijbiomac.2019.12.258] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
9 Song YH, Agrawal NK, Griffin JM, Schmidt CE. Recent advances in nanotherapeutic strategies for spinal cord injury repair. Adv Drug Deliv Rev 2019;148:38-59. [PMID: 30582938 DOI: 10.1016/j.addr.2018.12.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
10 Walsh CM, Wychowaniec JK, Brougham DF, Dooley D. Functional hydrogels as therapeutic tools for spinal cord injury: New perspectives on immunopharmacological interventions. Pharmacol Ther 2021;:108043. [PMID: 34813862 DOI: 10.1016/j.pharmthera.2021.108043] [Reference Citation Analysis]
11 Thompson RE, Pardieck J, Smith L, Kenny P, Crawford L, Shoichet M, Sakiyama-Elbert S. Effect of hyaluronic acid hydrogels containing astrocyte-derived extracellular matrix and/or V2a interneurons on histologic outcomes following spinal cord injury. Biomaterials 2018;162:208-23. [PMID: 29459311 DOI: 10.1016/j.biomaterials.2018.02.013] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 10.0] [Reference Citation Analysis]
12 Cao J, Wu J, Mu J, Feng S, Gao J. The design criteria and therapeutic strategy of functional scaffolds for spinal cord injury repair. Biomater Sci 2021;9:4591-606. [PMID: 34018520 DOI: 10.1039/d1bm00361e] [Reference Citation Analysis]
13 Yao S, Yu S, Cao Z, Yang Y, Yu X, Mao HQ, Wang LN, Sun X, Zhao L, Wang X. Hierarchically aligned fibrin nanofiber hydrogel accelerated axonal regrowth and locomotor function recovery in rat spinal cord injury. Int J Nanomedicine 2018;13:2883-95. [PMID: 29844671 DOI: 10.2147/IJN.S159356] [Cited by in Crossref: 29] [Cited by in F6Publishing: 15] [Article Influence: 7.3] [Reference Citation Analysis]
14 Burnight ER, Giacalone JC, Cooke JA, Thompson JR, Bohrer LR, Chirco KR, Drack AV, Fingert JH, Worthington KS, Wiley LA, Mullins RF, Stone EM, Tucker BA. CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration. Prog Retin Eye Res 2018;65:28-49. [PMID: 29578069 DOI: 10.1016/j.preteyeres.2018.03.003] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 8.5] [Reference Citation Analysis]
15 Yu Z, Li H, Xia P, Kong W, Chang Y, Fu C, Wang K, Yang X, Qi Z. Application of fibrin-based hydrogels for nerve protection and regeneration after spinal cord injury. J Biol Eng 2020;14:22. [PMID: 32774454 DOI: 10.1186/s13036-020-00244-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
16 Shultz RB, Zhong Y. Hydrogel-based local drug delivery strategies for spinal cord repair. Neural Regen Res 2021;16:247-53. [PMID: 32859771 DOI: 10.4103/1673-5374.290882] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
17 Lim HJ, Perera TH, Wilems TS, Ghosh S, Zheng Y, Azhdarinia A, Cao Q, Smith Callahan LA. Response to di-functionalized hyaluronic acid with orthogonal chemistry grafting at independent modification sites in rodent models of neural differentiation and spinal cord injury. J Mater Chem B 2016;4:6865-75. [DOI: 10.1039/c6tb01906d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
18 Li Z, Wang Q, Hu H, Zheng W, Gao C. Research advances of biomaterials-based microenvironment-regulation therapies for repair and regeneration of spinal cord injury. Biomed Mater 2021;16. [PMID: 34384071 DOI: 10.1088/1748-605X/ac1d3c] [Reference Citation Analysis]
19 Dumont CM, Margul DJ, Shea LD. Tissue Engineering Approaches to Modulate the Inflammatory Milieu following Spinal Cord Injury. Cells Tissues Organs 2016;202:52-66. [PMID: 27701152 DOI: 10.1159/000446646] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
20 Payne SL, Ballios BG, Baumann MD, Cooke MJ, Shoichet MS. Central Nervous System. Principles of Regenerative Medicine. Elsevier; 2019. pp. 1199-221. [DOI: 10.1016/b978-0-12-809880-6.00068-0] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
21 Lin J, Pan X, Huang C, Gu M, Chen X, Zheng X, Shao Z, Hu S, Wang B, Lin H, Wu Y, Tian N, Wu Y, Gao W, Zhou Y, Zhang X, Wang X. Dual regulation of microglia and neurons by Astragaloside IV-mediated mTORC1 suppression promotes functional recovery after acute spinal cord injury. J Cell Mol Med 2020;24:671-85. [PMID: 31675186 DOI: 10.1111/jcmm.14776] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
22 Roman JA, Reucroft I, Martin RA, Hurtado A, Mao HQ. Local Release of Paclitaxel from Aligned, Electrospun Microfibers Promotes Axonal Extension. Adv Healthc Mater 2016;5:2628-35. [PMID: 27581383 DOI: 10.1002/adhm.201600415] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
23 De la Vega L, Karmirian K, Willerth SM. Engineering Neural Tissue from Human Pluripotent Stem Cells Using Novel Small Molecule Releasing Microspheres. Adv Biosys 2018;2:1800133. [DOI: 10.1002/adbi.201800133] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
24 Zhang Q, Shi B, Ding J, Yan L, Thawani JP, Fu C, Chen X. Polymer scaffolds facilitate spinal cord injury repair. Acta Biomater. 2019;88:57-77. [PMID: 30710714 DOI: 10.1016/j.actbio.2019.01.056] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 13.3] [Reference Citation Analysis]
25 Ham TR, Leipzig ND. Biomaterial strategies for limiting the impact of secondary events following spinal cord injury. Biomed Mater 2018;13:024105. [PMID: 29155409 DOI: 10.1088/1748-605X/aa9bbb] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
26 Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. Tissue Eng Part B Rev 2019;25:471-91. [PMID: 31452463 DOI: 10.1089/ten.TEB.2019.0182] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
27 Liu W, Quan P, Li Q, Tang P, Chen J, Jiang T, Cai W. Dextran-based biodegradable nanoparticles: an alternative and convenient strategy for treatment of traumatic spinal cord injury. Int J Nanomedicine 2018;13:4121-32. [PMID: 30038493 DOI: 10.2147/IJN.S171925] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
28 Nejati-koshki K, Mortazavi Y, Pilehvar-soltanahmadi Y, Sheoran S, Zarghami N. An update on application of nanotechnology and stem cells in spinal cord injury regeneration. Biomedicine & Pharmacotherapy 2017;90:85-92. [DOI: 10.1016/j.biopha.2017.03.035] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 7.8] [Reference Citation Analysis]
29 Yao S, Liu H, Yu S, Li Y, Wang X, Wang L. Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior. Regen Biomater 2016;3:309-17. [PMID: 27699061 DOI: 10.1093/rb/rbw033] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
30 Nelson DW, Gilbert RJ. Extracellular Matrix-Mimetic Hydrogels for Treating Neural Tissue Injury: A Focus on Fibrin, Hyaluronic Acid, and Elastin-Like Polypeptide Hydrogels. Adv Healthc Mater 2021;10:e2101329. [PMID: 34494398 DOI: 10.1002/adhm.202101329] [Reference Citation Analysis]
31 Liaw K, Zhang Z, Kannan S. Neuronanotechnology for brain regeneration. Adv Drug Deliv Rev 2019;148:3-18. [PMID: 31668648 DOI: 10.1016/j.addr.2019.04.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
32 Wilems TS, Pardieck J, Iyer N, Sakiyama-Elbert SE. Combination therapy of stem cell derived neural progenitors and drug delivery of anti-inhibitory molecules for spinal cord injury. Acta Biomater 2015;28:23-32. [PMID: 26384702 DOI: 10.1016/j.actbio.2015.09.018] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 7.0] [Reference Citation Analysis]
33 Kang KR, Kim J, Ryu B, Lee SG, Oh MS, Baek J, Ren X, Canavero S, Kim CY, Chung HM. BAPTA, a calcium chelator, neuroprotects injured neurons in vitro and promotes motor recovery after spinal cord transection in vivo. CNS Neurosci Ther 2021;27:919-29. [PMID: 33942993 DOI: 10.1111/cns.13651] [Reference Citation Analysis]
34 Jeon S, Na Y, Lee H, Cho C. Hybrid polymeric microspheres for enhancing the encapsulation of phenylethyl resorcinol. Journal of Microencapsulation 2019;36:130-9. [DOI: 10.1080/02652048.2019.1607598] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
35 Ayyanaar S, Kesavan MP, Sivaraman G, Maddiboyina B, Annaraj J, Rajesh J, Rajagopal G. A novel curcumin-loaded PLGA micromagnetic composite system for controlled and pH-responsive drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;573:188-95. [DOI: 10.1016/j.colsurfa.2019.04.062] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
36 Roura S, Gálvez-Montón C, Bayes-Genis A. Fibrin, the preferred scaffold for cell transplantation after myocardial infarction? An old molecule with a new life. J Tissue Eng Regen Med 2017;11:2304-13. [PMID: 27061269 DOI: 10.1002/term.2129] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
37 Rocha LA, Silva D, Barata‐antunes S, Cavaleiro H, Gomes ED, Silva NA, Salgado AJ. Cell and Tissue Instructive Materials for Central Nervous System Repair. Adv Funct Mater 2020;30:1909083. [DOI: 10.1002/adfm.201909083] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
38 Rather AM, Shome A, Bhunia BK, Panuganti A, Mandal BB, Manna U. Simultaneous and controlled release of two different bioactive small molecules from nature inspired single material. J Mater Chem B 2018;6:7692-702. [DOI: 10.1039/c8tb02406e] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
39 Lin W, Xu T, Wang Z, Chen J. Sustained intrathecal delivery of amphotericin B using an injectable and biodegradable thermogel. Drug Deliv 2021;28:499-509. [PMID: 33657949 DOI: 10.1080/10717544.2021.1892242] [Reference Citation Analysis]
40 Johnson CDL, Ganguly D, Zuidema JM, Cardinal TJ, Ziemba AM, Kearns KR, McCarthy SM, Thompson DM, Ramanath G, Borca-Tasciuc DA, Dutz S, Gilbert RJ. Injectable, Magnetically Orienting Electrospun Fiber Conduits for Neuron Guidance. ACS Appl Mater Interfaces 2019;11:356-72. [PMID: 30516370 DOI: 10.1021/acsami.8b18344] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
41 Guo W, Qu W, Zeng L, Qi Z, Huang C, Zhu Z, Li R. l-Theanine and NEP1-40 promote nerve regeneration and functional recovery after brachial plexus root avulsion. Biochemical and Biophysical Research Communications 2019;508:1126-32. [DOI: 10.1016/j.bbrc.2018.11.124] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
42 Yin W, Xue W, Zhu H, Shen H, Xiao Z, Wu S, Zhao Y, Cao Y, Tan J, Li J, Liu W, Wang L, Meng L, Chen B, Zhao M, Jiang X, Li X, Ren C, Dai J. Scar tissue removal-activated endogenous neural stem cells aid Taxol-modified collagen scaffolds in repairing chronic long-distance transected spinal cord injury. Biomater Sci 2021;9:4778-92. [PMID: 34042920 DOI: 10.1039/d1bm00449b] [Reference Citation Analysis]
43 Hettiaratchi MH, Führmann T, Shoichet MS. Recent advances in regenerative medicine approaches for spinal cord injuries. Current Opinion in Biomedical Engineering 2017;4:40-9. [DOI: 10.1016/j.cobme.2017.08.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]