BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: Maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. Journal of Controlled Release 2014;193:241-56. [DOI: 10.1016/j.jconrel.2014.04.051] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 De Oliveira TC, Tavares ME, Soares-sobrinho JL, Chaves LL. The role of nanocarriers for transdermal application targeted to lymphatic drug delivery: Opportunities and challenges. Journal of Drug Delivery Science and Technology 2022;68:103110. [DOI: 10.1016/j.jddst.2022.103110] [Reference Citation Analysis]
2 Ruan S, Huang Y, He M, Gao H. Advanced Biomaterials for Cell‐Specific Modulation and Restore of Cancer Immunotherapy. Advanced Science. [DOI: 10.1002/advs.202200027] [Reference Citation Analysis]
3 Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 2021;:113914. [PMID: 34363861 DOI: 10.1016/j.addr.2021.113914] [Reference Citation Analysis]
4 Styles IK, Feeney OM, Nguyen TH, Brundel DHS, Kang DW, Clift R, McIntosh MP, Porter CJH. Removal of interstitial hyaluronan with recombinant human hyaluronidase improves the systemic and lymphatic uptake of cetuximab in rats. J Control Release 2019;315:85-96. [PMID: 31655131 DOI: 10.1016/j.jconrel.2019.10.040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
5 Lee G, Han S, Inocencio I, Cao E, Hong J, Phillips ARJ, Windsor JA, Porter CJH, Trevaskis NL. Lymphatic Uptake of Liposomes after Intraperitoneal Administration Primarily Occurs via the Diaphragmatic Lymphatics and is Dependent on Liposome Surface Properties. Mol Pharmaceutics 2019;16:4987-99. [DOI: 10.1021/acs.molpharmaceut.9b00855] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
6 Pascale F, Bédouet L, Fazel A, Namur J, Ghegediban SH, Cornil IS, Wassef M, Moine L, Laurent A. Lymphatic Transport and Lymph Node Location of Microspheres Subcutaneously Injected in the Vicinity of Tumors in a Rabbit Model of Breast Cancer. Pharm Res 2018;35. [DOI: 10.1007/s11095-018-2474-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
7 Nishimoto Y, Nagashima S, Nakajima K, Ohira T, Sato T, Izawa T, Yamate J, Higashikawa K, Kuge Y, Ogawa M, Kojima C. Carboxyl-, sulfonyl-, and phosphate-terminal dendrimers as a nanoplatform with lymph node targeting. Int J Pharm 2020;576:119021. [PMID: 31917298 DOI: 10.1016/j.ijpharm.2020.119021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
8 Nakamura T, Kawai M, Sato Y, Maeki M, Tokeshi M, Harashima H. The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution. Mol Pharm 2020;17:944-53. [PMID: 31990567 DOI: 10.1021/acs.molpharmaceut.9b01182] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
9 Borrajo E, Abellan-pose R, Soto A, Garcia-fuentes M, Csaba N, Alonso MJ, Vidal A. Docetaxel-loaded polyglutamic acid-PEG nanocapsules for the treatment of metastatic cancer. Journal of Controlled Release 2016;238:263-71. [DOI: 10.1016/j.jconrel.2016.07.048] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
10 Qin L, Zhang H, Zhou Y, Umeshappa CS, Gao H. Nanovaccine-Based Strategies to Overcome Challenges in the Whole Vaccination Cascade for Tumor Immunotherapy. Small 2021;17:e2006000. [PMID: 33768693 DOI: 10.1002/smll.202006000] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Maisel K, Sasso MS, Potin L, Swartz MA. Exploiting lymphatic vessels for immunomodulation: Rationale, opportunities, and challenges. Adv Drug Deliv Rev 2017;114:43-59. [PMID: 28694027 DOI: 10.1016/j.addr.2017.07.005] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 11.0] [Reference Citation Analysis]
12 Yadav P, McLeod VM, Nowell CJ, Selby LI, Johnston APR, Kaminskas LM, Trevaskis NL. Distribution of therapeutic proteins into thoracic lymph after intravenous administration is protein size-dependent and primarily occurs within the liver and mesentery. J Control Release 2018;272:17-28. [PMID: 29305921 DOI: 10.1016/j.jconrel.2017.12.031] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
13 Oladipo AO, Lebepe TC, Ncapayi V, Tsolekile N, Parani S, Songca SP, Mori S, Kodama T, Oluwafemi OS. The Therapeutic Effect of Second Near-Infrared Absorbing Gold Nanorods on Metastatic Lymph Nodes via Lymphatic Delivery System. Pharmaceutics 2021;13:1359. [PMID: 34575435 DOI: 10.3390/pharmaceutics13091359] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Qi S, Wang X, Chang K, Shen W, Yu G, Du J. The bright future of nanotechnology in lymphatic system imaging and imaging-guided surgery. J Nanobiotechnology 2022;20:24. [PMID: 34991595 DOI: 10.1186/s12951-021-01232-5] [Reference Citation Analysis]
15 Jiang H, Wang Q, Li L, Zeng Q, Li H, Gong T, Zhang Z, Sun X. Turning the Old Adjuvant from Gel to Nanoparticles to Amplify CD8+ T Cell Responses. Adv Sci (Weinh) 2018;5:1700426. [PMID: 29375970 DOI: 10.1002/advs.201700426] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 7.4] [Reference Citation Analysis]
16 Wang L, He Y, He T, Liu G, Lin C, Li K, Lu L, Cai K. Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials 2020;255:120208. [PMID: 32569862 DOI: 10.1016/j.biomaterials.2020.120208] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
17 Jiang H, Wang Q, Sun X. Lymph node targeting strategies to improve vaccination efficacy. Journal of Controlled Release 2017;267:47-56. [DOI: 10.1016/j.jconrel.2017.08.009] [Cited by in Crossref: 98] [Cited by in F6Publishing: 87] [Article Influence: 19.6] [Reference Citation Analysis]
18 Tessier N, Moawad F, Amri N, Brambilla D, Martel C. Focus on the Lymphatic Route to Optimize Drug Delivery in Cardiovascular Medicine. Pharmaceutics 2021;13:1200. [PMID: 34452161 DOI: 10.3390/pharmaceutics13081200] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Wang F, Ullah A, Fan X, Xu Z, Zong R, Wang X, Chen G. Delivery of nanoparticle antigens to antigen-presenting cells: from extracellular specific targeting to intracellular responsive presentation. J Control Release 2021;333:107-28. [PMID: 33774119 DOI: 10.1016/j.jconrel.2021.03.027] [Reference Citation Analysis]
20 Permana AD, Nainu F, Moffatt K, Larrañeta E, Donnelly RF. Recent advances in combination of microneedles and nanomedicines for lymphatic targeted drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1690. [PMID: 33401339 DOI: 10.1002/wnan.1690] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Landh E, Wang R, Moir LM, Traini D, Young PM, Ong HX. Prospective nanoparticle treatments for lymphangioleiomyomatosis. Expert Opinion on Drug Delivery. [DOI: 10.1080/17425247.2022.2029401] [Reference Citation Analysis]
22 Archer PA, Sestito LF, Manspeaker MP, O'Melia MJ, Rohner NA, Schudel A, Mei Y, Thomas SN. Quantitation of lymphatic transport mechanism and barrier influences on lymph node-resident leukocyte access to lymph-borne macromolecules and drug delivery systems. Drug Deliv Transl Res 2021. [PMID: 34165731 DOI: 10.1007/s13346-021-01015-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Teijeiro-Valiño C, Novoa-Carballal R, Borrajo E, Vidal A, Alonso-Nocelo M, de la Fuente Freire M, Lopez-Casas PP, Hidalgo M, Csaba N, Alonso MJ. A multifunctional drug nanocarrier for efficient anticancer therapy. J Control Release 2019;294:154-64. [PMID: 30529724 DOI: 10.1016/j.jconrel.2018.12.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
24 Obinu A, Gavini E, Rassu G, Maestri M, Bonferoni MC, Giunchedi P. Lymph node metastases: importance of detection and treatment strategies. Expert Opin Drug Deliv 2018;15:459-67. [PMID: 29504430 DOI: 10.1080/17425247.2018.1446937] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
25 Zang X, Zhao X, Hu H, Qiao M, Deng Y, Chen D. Nanoparticles for tumor immunotherapy. European Journal of Pharmaceutics and Biopharmaceutics 2017;115:243-56. [DOI: 10.1016/j.ejpb.2017.03.013] [Cited by in Crossref: 49] [Cited by in F6Publishing: 47] [Article Influence: 9.8] [Reference Citation Analysis]
26 Feeney OM, Gracia G, Brundel DHS, Trevaskis NL, Cao E, Kaminskas LM, Porter CJH. Lymph-directed immunotherapy - Harnessing endogenous lymphatic distribution pathways for enhanced therapeutic outcomes in cancer. Adv Drug Deliv Rev 2020;160:115-35. [PMID: 33039497 DOI: 10.1016/j.addr.2020.10.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
27 Alonso-Nocelo M, Abellan-Pose R, Vidal A, Abal M, Csaba N, Alonso MJ, Lopez-Lopez R, de la Fuente M. Selective interaction of PEGylated polyglutamic acid nanocapsules with cancer cells in a 3D model of a metastatic lymph node. J Nanobiotechnology 2016;14:51. [PMID: 27339609 DOI: 10.1186/s12951-016-0207-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
28 Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov 2015;14:781-803. [DOI: 10.1038/nrd4608] [Cited by in Crossref: 279] [Cited by in F6Publishing: 266] [Article Influence: 39.9] [Reference Citation Analysis]
29 Singh Y, Srinivas A, Gangwar M, Meher JG, Misra-bhattacharya S, Chourasia MK. Subcutaneously Administered Ultrafine PLGA Nanoparticles Containing Doxycycline Hydrochloride Target Lymphatic Filarial Parasites. Mol Pharmaceutics 2016;13:2084-94. [DOI: 10.1021/acs.molpharmaceut.6b00206] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
30 Xu G, Qian Y, Zheng H, Qiao S, Yan D, Lu L, Wu L, Yang X, Luo Q, Zhang Z. Long-Distance Tracing of the Lymphatic System with a Computed Tomography/Fluorescence Dual-Modality Nanoprobe for Surveying Tumor Lymphatic Metastasis. Bioconjugate Chem 2019;30:1199-209. [DOI: 10.1021/acs.bioconjchem.9b00144] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, Hoad CL, Jedamzik P, Madla CM, Maliepaard M, Marciani L, Maruca A, Parrott N, Pávek P, Porter CJH, Reppas C, van Riet-Nales D, Rubbens J, Statelova M, Trevaskis NL, Valentová K, Vertzoni M, Čepo DV, Corsetti M. The mechanisms of pharmacokinetic food-drug interactions - A perspective from the UNGAP group. Eur J Pharm Sci 2019;134:31-59. [PMID: 30974173 DOI: 10.1016/j.ejps.2019.04.003] [Cited by in Crossref: 81] [Cited by in F6Publishing: 62] [Article Influence: 27.0] [Reference Citation Analysis]
32 Elz AS, Trevaskis NL, Porter CJH, Bowen JM, Prestidge CA. Smart design approaches for orally administered lipophilic prodrugs to promote lymphatic transport. J Control Release 2021;341:676-701. [PMID: 34896450 DOI: 10.1016/j.jconrel.2021.12.003] [Reference Citation Analysis]
33 Tada A, Horie S, Mori S, Kodama T. Therapeutic effect of cisplatin given with a lymphatic drug delivery system on false-negative metastatic lymph nodes. Cancer Sci 2017;108:2115-21. [PMID: 28846190 DOI: 10.1111/cas.13387] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
34 Basalious EB, Shamma RN. Novel self-assembled nano-tubular mixed micelles of Pluronics P123, Pluronic F127 and phosphatidylcholine for oral delivery of nimodipine: In vitro characterization, ex vivo transport and in vivo pharmacokinetic studies. International Journal of Pharmaceutics 2015;493:347-56. [DOI: 10.1016/j.ijpharm.2015.07.075] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
35 Fujii H, Horie S, Sukhbaatar A, Mishra R, Sakamoto M, Mori S, Kodama T. Treatment of false-negative metastatic lymph nodes by a lymphatic drug delivery system with 5-fluorouracil. Cancer Med 2019;8:2241-51. [PMID: 30945479 DOI: 10.1002/cam4.2125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
36 Zheng Z, Sun Y, Liu Z, Zhang M, Li C, Cai H. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug Des Devel Ther 2015;9:4931-42. [PMID: 26345159 DOI: 10.2147/DDDT.S90147] [Cited by in Crossref: 11] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
37 Permana AD, Tekko IA, Mccrudden MT, Anjani QK, Ramadon D, Mccarthy HO, Donnelly RF. Solid lipid nanoparticle-based dissolving microneedles: A promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis. Journal of Controlled Release 2019;316:34-52. [DOI: 10.1016/j.jconrel.2019.10.004] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 14.0] [Reference Citation Analysis]
38 Wang Y, Wang J, Zhu D, Wang Y, Qing G, Zhang Y, Liu X, Liang XJ. Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies. Acta Pharm Sin B 2021;11:886-902. [PMID: 33996405 DOI: 10.1016/j.apsb.2021.03.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. Adv Mater 2019;31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 13.3] [Reference Citation Analysis]
40 Spencer DS, Puranik AS, Peppas NA. Intelligent Nanoparticles for Advanced Drug Delivery in Cancer Treatment. Curr Opin Chem Eng 2015;7:84-92. [PMID: 25621200 DOI: 10.1016/j.coche.2014.12.003] [Cited by in Crossref: 69] [Cited by in F6Publishing: 59] [Article Influence: 9.9] [Reference Citation Analysis]
41 Sabri AH, Kim Y, Marlow M, Scurr DJ, Segal J, Banga AK, Kagan L, Lee JB. Intradermal and transdermal drug delivery using microneedles - Fabrication, performance evaluation and application to lymphatic delivery. Adv Drug Deliv Rev 2020;153:195-215. [PMID: 31634516 DOI: 10.1016/j.addr.2019.10.004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
42 Ryan GM, Bischof RJ, Enkhbaatar P, McLeod VM, Chan LJ, Jones SA, Owen DJ, Porter CJ, Kaminskas LM. A Comparison of the Pharmacokinetics and Pulmonary Lymphatic Exposure of a Generation 4 PEGylated Dendrimer Following Intravenous and Aerosol Administration to Rats and Sheep. Pharm Res 2016;33:510-25. [PMID: 26486513 DOI: 10.1007/s11095-015-1806-z] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
43 Kochappan R, Cao E, Han S, Hu L, Quach T, Senyschyn D, Ferreira VI, Lee G, Leong N, Sharma G, Lim SF, Nowell CJ, Chen Z, von Andrian UH, Bonner D, Mintern JD, Simpson JS, Trevaskis NL, Porter CJH. Targeted delivery of mycophenolic acid to the mesenteric lymph node using a triglyceride mimetic prodrug approach enhances gut-specific immunomodulation in mice. J Control Release 2021;332:636-51. [PMID: 33609620 DOI: 10.1016/j.jconrel.2021.02.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Hu H, Wang J, Wang H, Tan T, Li J, Wang Z, Sun K, Li Y, Zhang Z. Cell-penetrating peptide-based nanovehicles potentiate lymph metastasis targeting and deep penetration for anti-metastasis therapy. Theranostics 2018;8:3597-610. [PMID: 30026869 DOI: 10.7150/thno.25608] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
45 Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B 2021;11:2416-48. [PMID: 34522593 DOI: 10.1016/j.apsb.2021.04.001] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 Ryan GM, McLeod VM, Mehta D, Kelly BD, Stanislawski PC, Owen DJ, Kaminskas LM, Porter CJH. Lymphatic transport and lymph node targeting of methotrexate-conjugated PEGylated dendrimers are enhanced by reducing the length of the drug linker or masking interactions with the injection site. Nanomedicine 2017;13:2485-94. [PMID: 28821463 DOI: 10.1016/j.nano.2017.08.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
47 Jin SM, Lee SN, Yoo YJ, Lim YT. Molecular and Macroscopic Therapeutic Systems for Cytokine‐Based Cancer Immunotherapy. Advanced Therapeutics 2021;4:2100026. [DOI: 10.1002/adtp.202100026] [Reference Citation Analysis]
48 Han S, Hu L, Gracia, Quach T, Simpson JS, Edwards GA, Trevaskis NL, Porter CJH. Lymphatic Transport and Lymphocyte Targeting of a Triglyceride Mimetic Prodrug Is Enhanced in a Large Animal Model: Studies in Greyhound Dogs. Mol Pharmaceutics 2016;13:3351-61. [DOI: 10.1021/acs.molpharmaceut.6b00195] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
49 Zhao L, Shi X, Zhao J. Dendrimer-Based Nanoplatforms for SPECT Imaging Applications. In: Kumar CS, editor. Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis. Berlin: Springer Berlin Heidelberg; 2018. pp. 509-35. [DOI: 10.1007/978-3-662-56333-5_12] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
50 Cabral H, Makino J, Matsumoto Y, Mi P, Wu H, Nomoto T, Toh K, Yamada N, Higuchi Y, Konishi S, Kano MR, Nishihara H, Miura Y, Nishiyama N, Kataoka K. Systemic Targeting of Lymph Node Metastasis through the Blood Vascular System by Using Size-Controlled Nanocarriers. ACS Nano 2015;9:4957-67. [DOI: 10.1021/nn5070259] [Cited by in Crossref: 78] [Cited by in F6Publishing: 77] [Article Influence: 11.1] [Reference Citation Analysis]
51 Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell Mol Life Sci 2021;78:5139-61. [PMID: 33963442 DOI: 10.1007/s00018-021-03842-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Wauthoz N, Bastiat G, Moysan E, Cieślak A, Kondo K, Zandecki M, Moal V, Rousselet M, Hureaux J, Benoit J. Safe lipid nanocapsule-based gel technology to target lymph nodes and combat mediastinal metastases from an orthotopic non-small-cell lung cancer model in SCID-CB17 mice. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:1237-45. [DOI: 10.1016/j.nano.2015.02.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
53 Nakamura T, Harashima H. Dawn of lipid nanoparticles in lymph node targeting: Potential in cancer immunotherapy. Advanced Drug Delivery Reviews 2020;167:78-88. [DOI: 10.1016/j.addr.2020.06.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
54 Lam AD, Cao E, Leong N, Gracia G, J. H. Porter C, Feeney OM, Trevaskis NL. Intra-articular injection of biologic anti-rheumatic drugs enhances local exposure to the joint-draining lymphatics. European Journal of Pharmaceutics and Biopharmaceutics 2022. [DOI: 10.1016/j.ejpb.2022.02.014] [Reference Citation Analysis]
55 Niki Y, Ogawa M, Makiura R, Magata Y, Kojima C. Optimization of dendrimer structure for sentinel lymph node imaging: Effects of generation and terminal group. Nanomedicine: Nanotechnology, Biology and Medicine 2015;11:2119-27. [DOI: 10.1016/j.nano.2015.08.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
56 Zhu M. Immunological perspectives on spatial and temporal vaccine delivery. Adv Drug Deliv Rev 2021;178:113966. [PMID: 34506868 DOI: 10.1016/j.addr.2021.113966] [Reference Citation Analysis]
57 Han S, Quach T, Hu L, Lim SF, Gracia G, Trevaskis NL, Simpson JS, Porter CJH. The Impact of Conjugation Position and Linker Chemistry on the Lymphatic Transport of a Series of Glyceride and Phospholipid Mimetic Prodrugs. J Pharm Sci 2021;110:489-99. [PMID: 33069711 DOI: 10.1016/j.xphs.2020.10.021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Zhao P, Le Z, Liu L, Chen Y. Therapeutic Delivery to the Brain via the Lymphatic Vasculature. Nano Lett 2020;20:5415-20. [PMID: 32510957 DOI: 10.1021/acs.nanolett.0c01806] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
59 Abdallah M, Müllertz OO, Styles IK, Mörsdorf A, Quinn JF, Whittaker MR, Trevaskis NL. Lymphatic targeting by albumin-hitchhiking: Applications and optimisation. J Control Release 2020;327:117-28. [PMID: 32771478 DOI: 10.1016/j.jconrel.2020.07.046] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
60 Sarfarazi A, Lee G, Mirjalili SA, Phillips ARJ, Windsor JA, Trevaskis NL. Therapeutic delivery to the peritoneal lymphatics: Current understanding, potential treatment benefits and future prospects. Int J Pharm 2019;567:118456. [PMID: 31238102 DOI: 10.1016/j.ijpharm.2019.118456] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
61 Cote B, Rao D, Alany RG, Kwon GS, Alani AW. Lymphatic changes in cancer and drug delivery to the lymphatics in solid tumors. Advanced Drug Delivery Reviews 2019;144:16-34. [DOI: 10.1016/j.addr.2019.08.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
62 Shao J, Kraft JC, Li B, Yu J, Freeling J, Koehn J, Ho RJ. Nanodrug formulations to enhance HIV drug exposure in lymphoid tissues and cells: clinical significance and potential impact on treatment and eradication of HIV/AIDS. Nanomedicine (Lond) 2016;11:545-64. [PMID: 26892323 DOI: 10.2217/nnm.16.1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
63 Das SS, Alkahtani S, Bharadwaj P, Ansari MT, ALKahtani MDF, Pang Z, Hasnain MS, Nayak AK, Aminabhavi TM. Molecular insights and novel approaches for targeting tumor metastasis. Int J Pharm 2020;585:119556. [PMID: 32574684 DOI: 10.1016/j.ijpharm.2020.119556] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
64 Li B, Yuan Z, He Y, Hung H, Jiang S. Zwitterionic Nanoconjugate Enables Safe and Efficient Lymphatic Drug Delivery. Nano Lett 2020;20:4693-9. [DOI: 10.1021/acs.nanolett.0c01713] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
65 Doddapaneni BS, Kyryachenko S, Chagani SE, Alany RG, Rao DA, Indra AK, Alani AW. A three-drug nanoscale drug delivery system designed for preferential lymphatic uptake for the treatment of metastatic melanoma. Journal of Controlled Release 2015;220:503-14. [DOI: 10.1016/j.jconrel.2015.11.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
66 Xiong J, Wu M, Chen J, Liu Y, Chen Y, Fan G, Liu Y, Cheng J, Wang Z, Wang S, Liu Y, Zhang W. Cancer-Erythrocyte Hybrid Membrane-Camouflaged Magnetic Nanoparticles with Enhanced Photothermal-Immunotherapy for Ovarian Cancer. ACS Nano 2021;15:19756-70. [PMID: 34860006 DOI: 10.1021/acsnano.1c07180] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Ganapathy V, Moghe PV, Roth CM. Targeting tumor metastases: Drug delivery mechanisms and technologies. J Control Release 2015;219:215-23. [PMID: 26409123 DOI: 10.1016/j.jconrel.2015.09.042] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
68 ElKasabgy NA, Elsayed I, Elshafeey AH. Design of lipotomes as a novel dual functioning nanocarrier for bioavailability enhancement of lacidipine: in-vitro and in-vivo characterization. Int J Pharm 2014;472:369-79. [PMID: 24979531 DOI: 10.1016/j.ijpharm.2014.06.048] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
69 Yukuyama MN, de Araujo GLB, de Souza A, Löbenberg R, Barbosa EJ, Henostroza MAB, Rocha NPD, de Oliveira IF, Folchini BR, Peroni CM, Masiero JF, Bou-Chacra NA. Cancer treatment in the lymphatic system: A prospective targeting employing nanostructured systems. Int J Pharm 2020;587:119697. [PMID: 32750440 DOI: 10.1016/j.ijpharm.2020.119697] [Reference Citation Analysis]