BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Etzerodt A, Maniecki MB, Graversen JH, Møller HJ, Torchilin VP, Moestrup SK. Efficient intracellular drug-targeting of macrophages using stealth liposomes directed to the hemoglobin scavenger receptor CD163. J Control Release. 2012;160:72-80. [PMID: 22306335 DOI: 10.1016/j.jconrel.2012.01.034] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 7.4] [Reference Citation Analysis]
Number Citing Articles
1 Vakili‐ghartavol R, Mombeiny R, Salmaninejad A, Sorkhabadi SMR, Faridi‐majidi R, Jaafari MR, Mirzaei H. Tumor‐associated macrophages and epithelial–mesenchymal transition in cancer: Nanotechnology comes into view. J Cell Physiol 2018;233:9223-36. [DOI: 10.1002/jcp.27027] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
2 Ferreira-Silva M, Faria-Silva C, Viana Baptista P, Fernandes E, Ramos Fernandes A, Corvo ML. Liposomal Nanosystems in Rheumatoid Arthritis. Pharmaceutics 2021;13:454. [PMID: 33801603 DOI: 10.3390/pharmaceutics13040454] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Ryu K, Kim T. Therapeutic gene delivery using bioreducible polymers. Arch Pharm Res 2014;37:31-42. [DOI: 10.1007/s12272-013-0275-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
4 Crielaard BJ, Lammers T, Rivella S. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov 2017;16:400-23. [PMID: 28154410 DOI: 10.1038/nrd.2016.248] [Cited by in Crossref: 123] [Cited by in F6Publishing: 119] [Article Influence: 24.6] [Reference Citation Analysis]
5 Pirmardvand Chegini S, Varshosaz J, Taymouri S. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artif Cells Nanomed Biotechnol 2018;46:502-14. [PMID: 29661045 DOI: 10.1080/21691401.2018.1460373] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
6 Ye H, Wang LY, Zhao J, Wang K. Increased CD163 expression is associated with acute-on-chronic hepatitis B liver failure. World J Gastroenterol 2013; 19(18): 2818-2825 [PMID: 23687420 DOI: 10.3748/wjg.v19.i18.2818] [Cited by in CrossRef: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
7 Castegna A, Gissi R, Menga A, Montopoli M, Favia M, Viola A, Canton M. Pharmacological targets of metabolism in disease: Opportunities from macrophages. Pharmacol Ther 2020;210:107521. [PMID: 32151665 DOI: 10.1016/j.pharmthera.2020.107521] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
8 Jepsen BN, Andersen KJ, Knudsen AR, Nyengaard JR, Hamilton-Dutoit S, Svendsen P, Etzerodt A, Møller HJ, Moestrup SK, Graversen JH, Mortensen FV. Anti-inflammatory liposomes have no impact on liver regeneration in rats. Ann Med Surg (Lond) 2015;4:452-61. [PMID: 26779334 DOI: 10.1016/j.amsu.2015.10.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
9 Graversen JH, Moestrup SK. Drug Trafficking into Macrophages via the Endocytotic Receptor CD163. Membranes (Basel) 2015;5:228-52. [PMID: 26111002 DOI: 10.3390/membranes5020228] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
10 Madkour LH. Biological barriers to cancer drug delivery, efficacy and cancer models. Nucleic Acids as Gene Anticancer Drug Delivery Therapy. Elsevier; 2019. pp. 359-423. [DOI: 10.1016/b978-0-12-819777-6.00018-4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Eichendorff S, Svendsen P, Bender D, Keiding S, Christensen EI, Deleuran B, Moestrup SK. Biodistribution and PET imaging of a novel [68Ga]-anti-CD163-antibody conjugate in rats with collagen-induced arthritis and in controls. Mol Imaging Biol 2015;17:87-93. [PMID: 25053229 DOI: 10.1007/s11307-014-0768-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
12 Que W, Guo WZ, Li XK. Manipulation of Regulatory Dendritic Cells for Induction Transplantation Tolerance. Front Immunol 2020;11:582658. [PMID: 33162996 DOI: 10.3389/fimmu.2020.582658] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zhao G, Rodriguez BL. Molecular targeting of liposomal nanoparticles to tumor microenvironment. Int J Nanomedicine 2013;8:61-71. [PMID: 23293520 DOI: 10.2147/IJN.S37859] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 1.2] [Reference Citation Analysis]
14 Yang M, Ding J, Feng X, Chang F, Wang Y, Gao Z, Zhuang X, Chen X. Scavenger Receptor-Mediated Targeted Treatment of Collagen-Induced Arthritis by Dextran Sulfate-Methotrexate Prodrug. Theranostics 2017;7:97-105. [PMID: 28042319 DOI: 10.7150/thno.16844] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 10.6] [Reference Citation Analysis]
15 Wang S, Lv J, Meng S, Tang J, Nie L. Recent Advances in Nanotheranostics for Treat‐to‐Target of Rheumatoid Arthritis. Adv Healthcare Mater 2020;9:1901541. [DOI: 10.1002/adhm.201901541] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
16 Tran T, Amiji MM. Targeted delivery systems for biological therapies of inflammatory diseases. Expert Opinion on Drug Delivery 2014;12:393-414. [DOI: 10.1517/17425247.2015.972931] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
17 Jain NK, Mishra V, Mehra NK. Targeted drug delivery to macrophages. Expert Opinion on Drug Delivery 2013;10:353-67. [DOI: 10.1517/17425247.2013.751370] [Cited by in Crossref: 108] [Cited by in F6Publishing: 98] [Article Influence: 12.0] [Reference Citation Analysis]
18 Zheng X, Turkowski K, Mora J, Brüne B, Seeger W, Weigert A, Savai R. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget 2017;8:48436-52. [PMID: 28467800 DOI: 10.18632/oncotarget.17061] [Cited by in Crossref: 128] [Cited by in F6Publishing: 124] [Article Influence: 32.0] [Reference Citation Analysis]
19 Naeem M, Lee J, Oshi MA, Cao J, Hlaing SP, Im E, Jung Y, Yoo JW. Colitis-targeted hybrid nanoparticles-in-microparticles system for the treatment of ulcerative colitis. Acta Biomater 2020;116:368-82. [PMID: 32937207 DOI: 10.1016/j.actbio.2020.09.017] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
20 Yu M, Chen Z, Guo W, Wang J, Feng Y, Kong X, Hong Z. Specifically targeted delivery of protein to phagocytic macrophages. Int J Nanomedicine 2015;10:1743-57. [PMID: 25784802 DOI: 10.2147/IJN.S75950] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
21 Li Y, Wang F, Imani S, Tao L, Deng Y, Cai Y. Natural Killer Cells: Friend or Foe in Metabolic Diseases? Front Immunol 2021;12:614429. [PMID: 33717101 DOI: 10.3389/fimmu.2021.614429] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Poznyak AV, Nikiforov NG, Starodubova AV, Popkova TV, Orekhov AN. Macrophages and Foam Cells: Brief Overview of Their Role, Linkage, and Targeting Potential in Atherosclerosis. Biomedicines 2021;9:1221. [PMID: 34572406 DOI: 10.3390/biomedicines9091221] [Reference Citation Analysis]
23 Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 2014;35:3365-83. [PMID: 24439402 DOI: 10.1016/j.biomaterials.2013.12.090] [Cited by in Crossref: 496] [Cited by in F6Publishing: 452] [Article Influence: 62.0] [Reference Citation Analysis]
24 Ma L, Bygd HC, Bratlie KM. Improving selective targeting to macrophage subpopulations through modifying liposomes with arginine based materials. Integrative Biology 2017;9:58-67. [DOI: 10.1039/c6ib00133e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
25 Moghimi SM, Parhamifar L, Ahmadvand D, Wibroe PP, Andresen TL, Farhangrazi ZS, Hunter AC. Particulate systems for targeting of macrophages: basic and therapeutic concepts. J Innate Immun 2012;4:509-28. [PMID: 22722900 DOI: 10.1159/000339153] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 4.1] [Reference Citation Analysis]
26 Cuthbert GA, Shaik F, Harrison MA, Ponnambalam S, Homer-Vanniasinkam S. Scavenger Receptors as Biomarkers and Therapeutic Targets in Cardiovascular Disease. Cells 2020;9:E2453. [PMID: 33182772 DOI: 10.3390/cells9112453] [Reference Citation Analysis]
27 Kateh Shamshiri M, Jaafari MR, Badiee A. Preparation of liposomes containing IFN-gamma and their potentials in cancer immunotherapy: In vitro and in vivo studies in a colon cancer mouse model. Life Sci 2021;264:118605. [PMID: 33096119 DOI: 10.1016/j.lfs.2020.118605] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Kang W, Svirskis D, Sarojini V, McGregor AL, Bevitt J, Wu Z. Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study. Oncotarget 2017;8:36614-27. [PMID: 28402271 DOI: 10.18632/oncotarget.16625] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
29 Koshkaryev A, Sawant R, Deshpande M, Torchilin V. Immunoconjugates and long circulating systems: origins, current state of the art and future directions. Adv Drug Deliv Rev 2013;65:24-35. [PMID: 22964425 DOI: 10.1016/j.addr.2012.08.009] [Cited by in Crossref: 95] [Cited by in F6Publishing: 86] [Article Influence: 9.5] [Reference Citation Analysis]
30 Yong SB, Song Y, Kim HJ, Ain QU, Kim YH. Mononuclear phagocytes as a target, not a barrier, for drug delivery. J Control Release 2017;259:53-61. [PMID: 28108325 DOI: 10.1016/j.jconrel.2017.01.024] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
31 Sæderup KL, Stødkilde K, Graversen JH, Dickson CF, Etzerodt A, Hansen SW, Fago A, Gell D, Andersen CB, Moestrup SK. The Staphylococcus aureus Protein IsdH Inhibits Host Hemoglobin Scavenging to Promote Heme Acquisition by the Pathogen. J Biol Chem 2016;291:23989-98. [PMID: 27681593 DOI: 10.1074/jbc.M116.755934] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
32 Chain CY, Daza Millone MA, Cisneros JS, Ramirez EA, Vela ME. Surface Plasmon Resonance as a Characterization Tool for Lipid Nanoparticles Used in Drug Delivery. Front Chem 2020;8:605307. [PMID: 33490037 DOI: 10.3389/fchem.2020.605307] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Webster DM, Sundaram P, Byrne ME. Injectable nanomaterials for drug delivery: Carriers, targeting moieties, and therapeutics. European Journal of Pharmaceutics and Biopharmaceutics 2013;84:1-20. [DOI: 10.1016/j.ejpb.2012.12.009] [Cited by in Crossref: 83] [Cited by in F6Publishing: 66] [Article Influence: 9.2] [Reference Citation Analysis]
34 Rafique A, Etzerodt A, Graversen JH, Moestrup SK, Dagnæs-Hansen F, Møller HJ. Targeted lipid nanoparticle delivery of calcitriol to human monocyte-derived macrophages in vitro and in vivo: investigation of the anti-inflammatory effects of calcitriol. Int J Nanomedicine 2019;14:2829-46. [PMID: 31114197 DOI: 10.2147/IJN.S192113] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
35 Etzerodt A, Moestrup SK. CD163 and inflammation: biological, diagnostic, and therapeutic aspects. Antioxid Redox Signal. 2013;18:2352-2363. [PMID: 22900885 DOI: 10.1089/ars.2012.4834] [Cited by in Crossref: 218] [Cited by in F6Publishing: 214] [Article Influence: 21.8] [Reference Citation Analysis]
36 Niu M, Naguib YW, Aldayel AM, Shi YC, Hursting SD, Hersh MA, Cui Z. Biodistribution and in vivo activities of tumor-associated macrophage-targeting nanoparticles incorporated with doxorubicin. Mol Pharm 2014;11:4425-36. [PMID: 25314115 DOI: 10.1021/mp500565q] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 6.9] [Reference Citation Analysis]
37 Andersen MN, Etzerodt A, Graversen JH, Holthof LC, Moestrup SK, Hokland M, Møller HJ. STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes. Cancer Immunol Immunother 2019;68:489-502. [PMID: 30637473 DOI: 10.1007/s00262-019-02301-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
38 Sriraman SK, Torchilin VP. Recent Advances with Liposomes as Drug Carriers. In: Tiwari A, Nordin AN, editors. Advanced Biomaterials and Biodevices. Hoboken: John Wiley & Sons, Inc.; 2014. pp. 79-119. [DOI: 10.1002/9781118774052.ch3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Sriraman SK, Aryasomayajula B, Torchilin VP. Barriers to drug delivery in solid tumors. Tissue Barriers. 2014;2:e29528. [PMID: 25068098 DOI: 10.4161/tisb.29528] [Cited by in Crossref: 140] [Cited by in F6Publishing: 126] [Article Influence: 17.5] [Reference Citation Analysis]
40 Etzerodt A, Kjolby M, Nielsen MJ, Maniecki M, Svendsen P, Moestrup SK. Plasma clearance of hemoglobin and haptoglobin in mice and effect of CD163 gene targeting disruption. Antioxid Redox Signal 2013;18:2254-63. [PMID: 22793784 DOI: 10.1089/ars.2012.4605] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 5.4] [Reference Citation Analysis]
41 Tentillier N, Etzerodt A, Olesen MN, Rizalar FS, Jacobsen J, Bender D, Moestrup SK, Romero-Ramos M. Anti-Inflammatory Modulation of Microglia via CD163-Targeted Glucocorticoids Protects Dopaminergic Neurons in the 6-OHDA Parkinson's Disease Model. J Neurosci 2016;36:9375-90. [PMID: 27605613 DOI: 10.1523/JNEUROSCI.1636-16.2016] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 10.8] [Reference Citation Analysis]
42 Ochando J, Ordikhani F, Jordan S, Boros P, Thomson AW. Tolerogenic dendritic cells in organ transplantation. Transpl Int 2020;33:113-27. [PMID: 31472079 DOI: 10.1111/tri.13504] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
43 Lin P, Ji HH, Li YJ, Guo SD. Macrophage Plasticity and Atherosclerosis Therapy. Front Mol Biosci 2021;8:679797. [PMID: 34026849 DOI: 10.3389/fmolb.2021.679797] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
44 Zhang B, Wang T, Yang S, Xiao Y, Song Y, Zhang N, Garg S. Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy. J Control Release 2016;238:10-21. [PMID: 27432750 DOI: 10.1016/j.jconrel.2016.07.022] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 7.5] [Reference Citation Analysis]
45 Yousefpour P, Chilkoti A. Co-opting biology to deliver drugs. Biotechnol Bioeng 2014;111:1699-716. [PMID: 24916780 DOI: 10.1002/bit.25307] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 5.5] [Reference Citation Analysis]
46 Lokhande AS, Jahagirdar P, Dandekar P, Devarajan PV. Scavenger Receptor and Targeting Strategies. In: Devarajan PV, Dandekar P, D'souza AA, editors. Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis. Cham: Springer International Publishing; 2019. pp. 297-321. [DOI: 10.1007/978-3-030-29168-6_10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
47 Xiao B, Laroui H, Ayyadurai S, Viennois E, Charania MA, Zhang Y, Merlin D. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials. 2013;34:7471-7482. [PMID: 23820013 DOI: 10.1016/j.biomaterials.2013.06.008] [Cited by in Crossref: 118] [Cited by in F6Publishing: 115] [Article Influence: 13.1] [Reference Citation Analysis]
48 Binnemars-Postma K, Storm G, Prakash J. Nanomedicine Strategies to Target Tumor-Associated Macrophages. Int J Mol Sci 2017;18:E979. [PMID: 28471401 DOI: 10.3390/ijms18050979] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 9.2] [Reference Citation Analysis]
49 Torres Andón F, Alonso MJ. Nanomedicine and cancer immunotherapy – targeting immunosuppressive cells. Journal of Drug Targeting 2015;23:656-71. [DOI: 10.3109/1061186x.2015.1073295] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
50 He H, Ghosh S, Yang H. Nanomedicines for dysfunctional macrophage-associated diseases. J Control Release 2017;247:106-26. [PMID: 28057522 DOI: 10.1016/j.jconrel.2016.12.032] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
51 Andersen MN, Andersen NF, Lauridsen KL, Etzerodt A, Sorensen BS, Abildgaard N, Plesner T, Hokland M, Møller HJ. STAT3 is over-activated within CD163pos bone marrow macrophages in both Multiple Myeloma and the benign pre-condition MGUS. Cancer Immunol Immunother 2021. [PMID: 34061243 DOI: 10.1007/s00262-021-02952-1] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
52 Granfeldt A, Hvas CL, Graversen JH, Christensen PA, Petersen MD, Anton G, Svendsen P, Sølling C, Etzerodt A, Tønnesen E. Targeting dexamethasone to macrophages in a porcine endotoxemic model. Crit Care Med. 2013;41:e309-e318. [PMID: 23928834 DOI: 10.1097/ccm.0b013e31828a45ef] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
53 Upadhyay TK, Fatima N, Sharma D, Saravanakumar V, Sharma R. Preparation and characterization of beta-glucan particles containing a payload of nanoembedded rifabutin for enhanced targeted delivery to macrophages. EXCLI J 2017;16:210-28. [PMID: 28507467 DOI: 10.17179/excli2016-804] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
54 Singh Y, Pawar VK, Meher JG, Raval K, Kumar A, Shrivastava R, Bhadauria S, Chourasia MK. Targeting tumor associated macrophages (TAMs) via nanocarriers. Journal of Controlled Release 2017;254:92-106. [DOI: 10.1016/j.jconrel.2017.03.395] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 10.2] [Reference Citation Analysis]
55 Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163+ Macrophages in Inflammatory and Malignant Diseases. Int J Mol Sci 2020;21:E5497. [PMID: 32752088 DOI: 10.3390/ijms21155497] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
56 Martin JD, Miyazaki T, Cabral H. Remodeling tumor microenvironment with nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1730. [PMID: 34124849 DOI: 10.1002/wnan.1730] [Reference Citation Analysis]
57 De Vlaeminck Y, Lecocq Q, Giron P, Heirman C, Geeraerts X, Bolli E, Movahedi K, Massa S, Schoonooghe S, Thielemans K, Goyvaerts C, Van Ginderachter JA, Breckpot K. Single-domain antibody fusion proteins can target and shuttle functional proteins into macrophage mannose receptor expressing macrophages. J Control Release 2019;299:107-20. [PMID: 30797866 DOI: 10.1016/j.jconrel.2019.02.023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
58 Gaspar N, Zambito G, Löwik CMWG, Mezzanotte L. Active Nano-targeting of Macrophages. Curr Pharm Des 2019;25:1951-61. [PMID: 31291874 DOI: 10.2174/1381612825666190710114108] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
59 Werengowska-ciećwierz K, Wiśniewski M, Terzyk AP, Furmaniak S. The Chemistry of Bioconjugation in Nanoparticles-Based Drug Delivery System. Advances in Condensed Matter Physics 2015;2015:1-27. [DOI: 10.1155/2015/198175] [Cited by in Crossref: 41] [Cited by in F6Publishing: 23] [Article Influence: 5.9] [Reference Citation Analysis]
60 Peterson KR, Cottam MA, Kennedy AJ, Hasty AH. Macrophage-Targeted Therapeutics for Metabolic Disease. Trends Pharmacol Sci. 2018;39:536-546. [PMID: 29628274 DOI: 10.1016/j.tips.2018.03.001] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 12.5] [Reference Citation Analysis]
61 Xiao B, Chen Q, Zhang Z, Wang L, Kang Y, Denning T, Merlin D. TNFα gene silencing mediated by orally targeted nanoparticles combined with interleukin-22 for synergistic combination therapy of ulcerative colitis. J Control Release 2018;287:235-46. [PMID: 30107214 DOI: 10.1016/j.jconrel.2018.08.021] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 11.3] [Reference Citation Analysis]
62 Liu J, Li M, Luo Z, Dai L, Guo X, Cai K. Design of nanocarriers based on complex biological barriers in vivo for tumor therapy. Nano Today 2017;15:56-90. [DOI: 10.1016/j.nantod.2017.06.010] [Cited by in Crossref: 67] [Cited by in F6Publishing: 51] [Article Influence: 13.4] [Reference Citation Analysis]
63 Jiang P, Gao W, Ma T, Wang R, Piao Y, Dong X, Wang P, Zhang X, Liu Y, Su W, Xiang R, Zhang J, Li N. CD137 promotes bone metastasis of breast cancer by enhancing the migration and osteoclast differentiation of monocytes/macrophages. Theranostics 2019;9:2950-66. [PMID: 31244935 DOI: 10.7150/thno.29617] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 5.7] [Reference Citation Analysis]
64 Klauber TCB, Laursen JM, Zucker D, Brix S, Jensen SS, Andresen TL. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines. Acta Biomater 2017;53:367-77. [PMID: 28153581 DOI: 10.1016/j.actbio.2017.01.072] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
65 Cheng Y, Song S, Wu P, Lyu B, Qin M, Sun Y, Sun A, Mu L, Xu F, Zhang L, Wang J, Zhang Q. Tumor Associated Macrophages and TAMs-Based Anti-Tumor Nanomedicines. Adv Healthc Mater 2021;:e2100590. [PMID: 34292673 DOI: 10.1002/adhm.202100590] [Reference Citation Analysis]
66 Azevedo C, Macedo MH, Sarmento B. Strategies for the enhanced intracellular delivery of nanomaterials. Drug Discov Today 2018;23:944-59. [PMID: 28919437 DOI: 10.1016/j.drudis.2017.08.011] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
67 Etzerodt A, Tsalkitzi K, Maniecki M, Damsky W, Delfini M, Baudoin E, Moulin M, Bosenberg M, Graversen JH, Auphan-Anezin N, Moestrup SK, Lawrence T. Specific targeting of CD163+ TAMs mobilizes inflammatory monocytes and promotes T cell-mediated tumor regression. J Exp Med 2019;216:2394-411. [PMID: 31375534 DOI: 10.1084/jem.20182124] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 19.3] [Reference Citation Analysis]
68 Wang Y, Lin YX, Qiao SL, Wang J, Wang H. Progress in Tumor-Associated Macrophages: From Bench to Bedside. Adv Biosyst 2019;3:e1800232. [PMID: 32627370 DOI: 10.1002/adbi.201800232] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Etzerodt A, Moulin M, Doktor TK, Delfini M, Mossadegh-Keller N, Bajenoff M, Sieweke MH, Moestrup SK, Auphan-Anezin N, Lawrence T. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. J Exp Med 2020;217:e20191869. [PMID: 31951251 DOI: 10.1084/jem.20191869] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 21.0] [Reference Citation Analysis]
70 Zhao YD, Muhetaerjiang M, An HW, Fang X, Zhao Y, Wang H. Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy. Biomaterials 2021;268:120552. [PMID: 33307365 DOI: 10.1016/j.biomaterials.2020.120552] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
71 Fang G, Zhang Q, Pang Y, Thu HE, Hussain Z. Nanomedicines for improved targetability to inflamed synovium for treatment of rheumatoid arthritis: Multi-functionalization as an emerging strategy to optimize therapeutic efficacy. Journal of Controlled Release 2019;303:181-208. [DOI: 10.1016/j.jconrel.2019.04.027] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
72 Ren L, Chen S, Li H, Zhang Z, Ye C, Liu M, Zhou X. MRI-visible liposome nanovehicles for potential tumor-targeted delivery of multimodal therapies. Nanoscale 2015;7:12843-50. [PMID: 26022345 DOI: 10.1039/c5nr02144h] [Cited by in Crossref: 30] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
73 Etzerodt A, Rasmussen MR, Svendsen P, Chalaris A, Schwarz J, Galea I, Møller HJ, Moestrup SK. Structural basis for inflammation-driven shedding of CD163 ectodomain and tumor necrosis factor-α in macrophages. J Biol Chem 2014;289:778-88. [PMID: 24275664 DOI: 10.1074/jbc.M113.520213] [Cited by in Crossref: 55] [Cited by in F6Publishing: 37] [Article Influence: 6.1] [Reference Citation Analysis]
74 Klaßen C, Karabinskaya A, Dejager L, Vettorazzi S, Van Moorleghem J, Lühder F, Meijsing SH, Tuckermann JP, Bohnenberger H, Libert C, Reichardt HM. Airway Epithelial Cells Are Crucial Targets of Glucocorticoids in a Mouse Model of Allergic Asthma. J Immunol 2017;199:48-61. [PMID: 28515280 DOI: 10.4049/jimmunol.1601691] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
75 Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release 2015;219:500-18. [PMID: 26297206 DOI: 10.1016/j.jconrel.2015.07.024] [Cited by in Crossref: 156] [Cited by in F6Publishing: 133] [Article Influence: 22.3] [Reference Citation Analysis]