BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Krüger J, Groß R, Conzelmann C, Müller JA, Koepke L, Sparrer KMJ, Weil T, Schütz D, Seufferlein T, Barth TFE, Stenger S, Heller S, Münch J, Kleger A. Drug Inhibition of SARS-CoV-2 Replication in Human Pluripotent Stem Cell-Derived Intestinal Organoids. Cell Mol Gastroenterol Hepatol 2021;11:935-48. [PMID: 33186749 DOI: 10.1016/j.jcmgh.2020.11.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 33] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Aknouch I, Sridhar A, Freeze E, Giugliano FP, van Keulen BJ, Romijn M, Calitz C, García-Rodríguez I, Mulder L, Wildenberg ME, Muncan V, van Gils MJ, van Goudoever JB, Stittelaar KJ, Wolthers KC, Pajkrt D. Human milk inhibits some enveloped virus infections, including SARS-CoV-2, in an intestinal model. Life Sci Alliance 2022;5:e202201432. [PMID: 35926873 DOI: 10.26508/lsa.202201432] [Reference Citation Analysis]
2 Kim MB, Hwangbo S, Jang S, Jo YK. Bioengineered Co-culture of organoids to recapitulate host-microbe interactions. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100345] [Reference Citation Analysis]
3 Domke LM, Klein IM, Hartmann L, Schwab C, Marx A, Werner M, Möller P, Fend F, Bösmüller H, Schirmacher P. Biobanking in times of crisis – The COVID-19 Autopsy and Biosample Registry Baden-Wuerttemberg. Pathology - Research and Practice 2022. [DOI: 10.1016/j.prp.2022.154011] [Reference Citation Analysis]
4 Faraji SN, Raee MJ, Hashemi SMA, Daryabor G, Tabrizi R, Dashti FS, Behboudi E, Heidarnejad K, Nowrouzi-sohrabi P, Hatam G. Human interaction targets of SARS-COV-2 spike protein: A systematic review. Eur J Inflamm 2022;20:1721727X2210953. [DOI: 10.1177/1721727x221095382] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Günther C, Winner B, Neurath MF, Stappenbeck TS. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut 2022:gutjnl-2021-326560. [PMID: 35636923 DOI: 10.1136/gutjnl-2021-326560] [Reference Citation Analysis]
6 Yamada S, Noda T, Okabe K, Yanagida S, Nishida M, Kanda Y. SARS-CoV-2 induces barrier damage and inflammatory responses in the human iPSC-derived intestinal epithelium. Journal of Pharmacological Sciences 2022. [DOI: 10.1016/j.jphs.2022.04.010] [Reference Citation Analysis]
7 Han Y, Yang L, Lacko LA, Chen S. Human organoid models to study SARS-CoV-2 infection. Nat Methods 2022. [PMID: 35396481 DOI: 10.1038/s41592-022-01453-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
8 Meng Y, Sun J, Zhang G, Yu T, Piao H. A Pan-Cancer In Silico Analysis of the COVID-19 Internalization Protease: Transmembrane Proteaseserine-2. Front Genet 2022;13:805880. [DOI: 10.3389/fgene.2022.805880] [Reference Citation Analysis]
9 Krüger J, Breunig M, Pasquini LP, Morawe M, Groß A, Arnold F, Russell R, Seufferlein T, Azoitei N, Kestler HA, Julier C, Heller S, Hohwieler M, Kleger A. Functional Genomic Screening in Human Pluripotent Stem Cells Reveals New Roadblocks in Early Pancreatic Endoderm Formation. Cells 2022;11:582. [PMID: 35159392 DOI: 10.3390/cells11030582] [Reference Citation Analysis]
10 Harb A, Fakhreddine M, Zaraket H, Saleh FA. Three-Dimensional Cell Culture Models to Study Respiratory Virus Infections Including COVID-19. Biomimetics (Basel) 2021;7:3. [PMID: 35076456 DOI: 10.3390/biomimetics7010003] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 Tao S, Zandi K, Bassit L, Ong YT, Verma K, Liu P, Downs-Bowen JA, McBrayer T, LeCher JC, Kohler JJ, Tedbury PR, Kim B, Amblard F, Sarafianos SG, Schinazi RF. Comparison of anti-SARS-CoV-2 activity and intracellular metabolism of remdesivir and its parent nucleoside. Curr Res Pharmacol Drug Discov 2021;2:100045. [PMID: 34870151 DOI: 10.1016/j.crphar.2021.100045] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Warrier S, Mohana Sundaram S, Varier L, Balasubramanian A. Stalling SARS-CoV2 infection with stem cells: can regenerating perinatal tissue mesenchymal stem cells offer a multi-tiered therapeutic approach to COVID-19? Placenta 2021;117:161-8. [PMID: 34915433 DOI: 10.1016/j.placenta.2021.12.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Zech F, Schniertshauer D, Jung C, Herrmann A, Cordsmeier A, Xie Q, Nchioua R, Prelli Bozzo C, Volcic M, Koepke L, Müller JA, Krüger J, Heller S, Stenger S, Hoffmann M, Pöhlmann S, Kleger A, Jacob T, Conzelmann KK, Ensser A, Sparrer KMJ, Kirchhoff F. Spike residue 403 affects binding of coronavirus spikes to human ACE2. Nat Commun 2021;12:6855. [PMID: 34824253 DOI: 10.1038/s41467-021-27180-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
14 Heller S, Li Z, Lin Q, Geusz R, Breunig M, Hohwieler M, Zhang X, Nair GG, Seufferlein T, Hebrok M, Sander M, Julier C, Kleger A, Costa IG. Transcriptional changes and the role of ONECUT1 in hPSC pancreatic differentiation. Commun Biol 2021;4:1298. [PMID: 34789845 DOI: 10.1038/s42003-021-02818-3] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
15 Larijani B, Foroughi-Heravani N, Abedi M, Tayanloo-Beik A, Rezaei-Tavirani M, Adibi H, Arjmand B. Recent Advances of COVID-19 Modeling Based on Regenerative Medicine. Front Cell Dev Biol 2021;9:683619. [PMID: 34760882 DOI: 10.3389/fcell.2021.683619] [Reference Citation Analysis]
16 Li S, Yang S, Zhou Y, Disoma C, Dong Z, Du A, Zhang Y, Chen Y, Huang W, Chen J, Song D, Chen Z, Liu P, Li S, Zheng R, Liu S, Razzaq A, Chen X, Tao S, Yu C, Feng T, Liao W, Peng Y, Jiang T, Huang J, Wu W, Hu L, Wang L, Li S, Xia Z. Microbiome Profiling Using Shotgun Metagenomic Sequencing Identified Unique Microorganisms in COVID-19 Patients With Altered Gut Microbiota. Front Microbiol 2021;12:712081. [PMID: 34707577 DOI: 10.3389/fmicb.2021.712081] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
17 Arnold F, Kleger A. [Model systems in gastroenterological research : From animal models to human organoids to the clinic]. Pathologe 2021. [PMID: 34623464 DOI: 10.1007/s00292-021-00996-9] [Reference Citation Analysis]
18 Knyazev E, Nersisyan S, Tonevitsky A. Endocytosis and Transcytosis of SARS-CoV-2 Across the Intestinal Epithelium and Other Tissue Barriers. Front Immunol 2021;12:636966. [PMID: 34557180 DOI: 10.3389/fimmu.2021.636966] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
19 Luo Y, Zhang M, Chen Y, Chen Y, Zhu D. Application of Human Induced Pluripotent Stem Cell-Derived Cellular and Organoid Models for COVID-19 Research. Front Cell Dev Biol 2021;9:720099. [PMID: 34552930 DOI: 10.3389/fcell.2021.720099] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
20 İnanç İ, Erdemli E. Histopathological features of SARS-CoV-2 infection and relationships with organoid technology. J Int Med Res 2021;49:3000605211044382. [PMID: 34521239 DOI: 10.1177/03000605211044382] [Reference Citation Analysis]
21 Shpichka A, Bikmulina P, Peshkova M, Heydari Z, Kosheleva N, Vosough M, Timashev P. Organoids in modelling infectious diseases. Drug Discov Today 2021:S1359-6446(21)00363-9. [PMID: 34418577 DOI: 10.1016/j.drudis.2021.08.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Prelli Bozzo C, Nchioua R, Volcic M, Koepke L, Krüger J, Schütz D, Heller S, Stürzel CM, Kmiec D, Conzelmann C, Müller J, Zech F, Braun E, Groß R, Wettstein L, Weil T, Weiß J, Diofano F, Rodríguez Alfonso AA, Wiese S, Sauter D, Münch J, Goffinet C, Catanese A, Schön M, Boeckers TM, Stenger S, Sato K, Just S, Kleger A, Sparrer KMJ, Kirchhoff F. IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nat Commun 2021;12:4584. [PMID: 34321474 DOI: 10.1038/s41467-021-24817-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 35] [Article Influence: 1.0] [Reference Citation Analysis]
23 Deguchi S, Serrano-Aroca Á, Tambuwala MM, Uhal BD, Brufsky AM, Takayama K. SARS-CoV-2 research using human pluripotent stem cells and organoids. Stem Cells Transl Med 2021. [PMID: 34302450 DOI: 10.1002/sctm.21-0183] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
24 van der Vaart J, Lamers MM, Haagmans BL, Clevers H. Advancing lung organoids for COVID-19 research. Dis Model Mech 2021;14:dmm049060. [PMID: 34219165 DOI: 10.1242/dmm.049060] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
25 Yu J. Organoids: A New Model for SARS-CoV-2 Translational Research. Int J Stem Cells 2021;14:138-49. [PMID: 33632991 DOI: 10.15283/ijsc20169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
26 de Dios-Figueroa GT, Aguilera-Marquez JDR, Camacho-Villegas TA, Lugo-Fabres PH. 3D Cell Culture Models in COVID-19 Times: A Review of 3D Technologies to Understand and Accelerate Therapeutic Drug Discovery. Biomedicines 2021;9:602. [PMID: 34073231 DOI: 10.3390/biomedicines9060602] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
27 Qu C, Fuhler GM, Pan Y. Could Histamine H1 Receptor Antagonists Be Used for Treating COVID-19? Int J Mol Sci 2021;22:5672. [PMID: 34073529 DOI: 10.3390/ijms22115672] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
28 Kiener M, Roldan N, Machahua C, Sengupta A, Geiser T, Guenat OT, Funke-Chambour M, Hobi N, Kruithof-de Julio M. Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Front Med (Lausanne) 2021;8:644678. [PMID: 34026781 DOI: 10.3389/fmed.2021.644678] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
29 Youhanna S, Wright SC, Lauschke VM. Organotypic human ex vivo models for coronavirus disease 2019 research and drug development. Curr Opin Pharmacol 2021;59:11-8. [PMID: 34029832 DOI: 10.1016/j.coph.2021.04.006] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
30 Vandyck K, Deval J. Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Curr Opin Virol 2021;49:36-40. [PMID: 34029993 DOI: 10.1016/j.coviro.2021.04.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 46] [Article Influence: 3.0] [Reference Citation Analysis]
31 Geurts MH, van der Vaart J, Beumer J, Clevers H. The Organoid Platform: Promises and Challenges as Tools in the Fight against COVID-19. Stem Cell Reports 2021;16:412-8. [PMID: 33691146 DOI: 10.1016/j.stemcr.2020.11.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
32 Wettstein L, Weil T, Conzelmann C, Müller JA, Groß R, Hirschenberger M, Seidel A, Klute S, Zech F, Prelli Bozzo C, Preising N, Fois G, Lochbaum R, Knaff PM, Mailänder V, Ständker L, Thal DR, Schumann C, Stenger S, Kleger A, Lochnit G, Mayer B, Ruiz-Blanco YB, Hoffmann M, Sparrer KMJ, Pöhlmann S, Sanchez-Garcia E, Kirchhoff F, Frick M, Münch J. Alpha-1 antitrypsin inhibits TMPRSS2 protease activity and SARS-CoV-2 infection. Nat Commun 2021;12:1726. [PMID: 33741941 DOI: 10.1038/s41467-021-21972-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
33 Lv T, Meng F, Yu M, Huang H, Lin X, Zhao B. Defense of COVID-19 by Human Organoids. Phenomics 2021;1:113-28. [PMID: 35233559 DOI: 10.1007/s43657-021-00015-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 [DOI: 10.1101/2020.08.18.255935] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Reference Citation Analysis]