BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhu Z, Zhu C, Hu C, Liu B. Facile fabrication of BiOIO3/MIL-88B heterostructured photocatalysts for removal of pollutants under visible light irradiation. J Colloid Interface Sci 2021;607:595-606. [PMID: 34509734 DOI: 10.1016/j.jcis.2021.08.183] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Wu Z, Yang L, Yang X, Gao Y, Liu X, Que M, Yang T, Liu Z, Zheng H, Ma Y, Li Y, Chen J. Synthesis of a novel ternary BiOBr/g-C3N4/Ti3C2T hybrid for effectively removing tetracycline hydrochloride and rhodamine B. Journal of Alloys and Compounds 2023. [DOI: 10.1016/j.jallcom.2023.168734] [Reference Citation Analysis]
2 Xu A, Wei D, Chen X, Yang T, Huang Y, He H, Xu J. In situ transformation of bismuth-containing precursors into ultrathin bismuth nanosheets for enhanced electrochemical CO2 reduction. Chemical Engineering Journal 2023;452:139227. [DOI: 10.1016/j.cej.2022.139227] [Reference Citation Analysis]
3 Yang Z, Wang L, Fang M, Xia X, Liu Y. Efficient spatial separation of charge carriers over CoS1+x cocatalyst modified MIL-88B (Fe)/ZnIn2S4 S-scheme heterojunctions for photoredox dual reaction and insight into the charge-transfer mechanism. Separation and Purification Technology 2023;305:122509. [DOI: 10.1016/j.seppur.2022.122509] [Reference Citation Analysis]
4 Bao J, Zhang H, Muhammad Y, Wei H, Wang R, Fang G, Zhao Z, Zhao Z. Oriented Anchoring of NCQD on Citric Acid Defective Cluster of NH2-MIL-88B(Fe) for the Efficient Removal of Tetracycline via Photo-Fenton Catalysis. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141063] [Reference Citation Analysis]
5 Cui Y, Zheng J, Zhu Z, Hu C, Liu B. Preparation and application of Bi4O7/Cu-BiOCl heterojunction photocatalyst for photocatalytic degradation of tetracycline under visible light. Journal of Molecular Structure 2022. [DOI: 10.1016/j.molstruc.2022.134486] [Reference Citation Analysis]
6 Jin Z, Li J, Zhang Y, Liu D, Ding H, Mamba BB, Kuvarega AT, Gui J. Rational design of efficient visible-light photocatalysts (1D@2D/0D) ZnO@Ni-doped BiOBr/Bi heterojunction: Considerations on hierarchical structures, doping and SPR effect. Journal of Materials Science & Technology 2022;125:38-50. [DOI: 10.1016/j.jmst.2022.01.034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Zhang B, Xu H, Wang M, Su L, Zhang S, Zhang Y, Wang Q. Bismuth (III)-based metal-organic framework for tetracycline removal via adsorption and visible light catalysis processes. Journal of Environmental Chemical Engineering 2022;10:108469. [DOI: 10.1016/j.jece.2022.108469] [Reference Citation Analysis]
8 Ma R, Zhang S, Guo S, Jiang Z, Wang J, Sun M, Wang S, Wen T, Wang X. In situ low-temperature pyrolysis fabrication type II BiOIO3/Bi4O5I2 heterostructures with enhanced visible-light-driven photooxidation activity. Science of The Total Environment 2022;837:155836. [DOI: 10.1016/j.scitotenv.2022.155836] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Liu N, Dai W, Fei F, Xu H, Lei J, Quan G, Zheng Y, Zhang X, Tang L. Insights into the photocatalytic activation persulfate by visible light over ReS2/MIL-88B(Fe) for highly efficient degradation of ibuprofen: Combination of experimental and theoretical study. Separation and Purification Technology 2022;297:121545. [DOI: 10.1016/j.seppur.2022.121545] [Cited by in Crossref: 7] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
10 Khan MM, Rahman A, Matussin SN. Recent Progress of Metal-Organic Frameworks and Metal-Organic Frameworks-Based Heterostructures as Photocatalysts. Nanomaterials 2022;12:2820. [DOI: 10.3390/nano12162820] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 He H, Zhu Z, Zheng J, Hu C, Cui Y, Liu B, Wang W. Preparation of dual Z-scheme PDIP/WO3@CN-Br heterojunction photocatalyst and its excellent degradation efficiency of tetracycline under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.130041] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Chen L, Chen C, Huang C, Chuang Y, Nguyen T, Dong C. A visible-light sensitive MoSSe nanohybrid for the photocatalytic degradation of tetracycline, oxytetracycline, and chlortetracycline. Journal of Colloid and Interface Science 2022;616:67-80. [DOI: 10.1016/j.jcis.2022.01.035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
13 Huang Q, Hu J, Hu Y, Liu J, He J, Zhou G, Hu N, Yang Z, Zhang Y, Zhou Y, Zou Z. Simultaneously enhanced photocatalytic cleanup of Cr(vi) and tetracycline via a ZnIn2S4 nanoflake-decorated 24-faceted concave MIL-88B(Fe) polyhedron S-scheme system. Environ Sci : Nano 2022. [DOI: 10.1039/d2en00781a] [Reference Citation Analysis]