1 |
Du X, Zhang M, Ma Y, Wang X, Liu Y, Huang H, Kang Z. Size-dependent antibacterial of carbon dots by selective absorption and differential oxidative stress of bacteria. J Colloid Interface Sci 2023;634:44-53. [PMID: 36528970 DOI: 10.1016/j.jcis.2022.12.025] [Reference Citation Analysis]
|
2 |
Liu Y, Zhong D, Yu L, Shi Y, Xu Y. Primary Amine Functionalized Carbon Dots for Dead and Alive Bacterial Imaging. Nanomaterials (Basel) 2023;13. [PMID: 36770398 DOI: 10.3390/nano13030437] [Reference Citation Analysis]
|
3 |
Laksono AD, Damastuti R, Amanah NL, Assa MH, Cheng Y, Ernawati L, Nugroho A, Abdullah H. Photocatalytic and Adsorptive Removal of Liquid Textile Industrial Waste with Carbon-Based Nanomaterials. Photocatalytic Activities for Environmental Remediation and Energy Conversion 2023. [DOI: 10.1007/978-981-19-6748-1_1] [Reference Citation Analysis]
|
4 |
Kostov K, Andonova-lilova B, Smagghe G. Inhibitory activity of carbon quantum dots against Phytophthora infestans and fungal plant pathogens and their effect on dsRNA-induced gene silencing. Biotechnology & Biotechnological Equipment 2022;36:949-959. [DOI: 10.1080/13102818.2022.2146533] [Reference Citation Analysis]
|
5 |
Liu Y, Zhang H, Xu Y. Quantum Dots for Pathogenic Bacterial Monitoring and Combating. Advanced Optical Materials 2022. [DOI: 10.1002/adom.202201826] [Reference Citation Analysis]
|
6 |
Zhang L, Zhang M, Mujumdar AS, Yu D, Wang H. Potential nano bacteriostatic agents to be used in meat-based foods processing and storage: A critical review. Trends in Food Science & Technology 2022. [DOI: 10.1016/j.tifs.2022.11.023] [Reference Citation Analysis]
|
7 |
Lin F, Wang Z, Wu FG. Carbon Dots for Killing Microorganisms: An Update since 2019. Pharmaceuticals (Basel) 2022;15:1236. [PMID: 36297348 DOI: 10.3390/ph15101236] [Reference Citation Analysis]
|
8 |
Alaş MÖ, Doğan G, Yalcin MS, Ozdemir S, Genç R. Multicolor Emitting Carbon Dot-Reinforced PVA Composites as Edible Food Packaging Films and Coatings with Antimicrobial and UV-Blocking Properties. ACS Omega. [DOI: 10.1021/acsomega.2c02984] [Reference Citation Analysis]
|
9 |
Singh PK, Singh PK, Sharma K. Electrochemical synthesis and characterization of thermally reduced graphene oxide: Influence of thermal annealing on microstructural features. Materials Today Communications 2022;32:103950. [DOI: 10.1016/j.mtcomm.2022.103950] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
10 |
Chiou YR, Lin CJ, Harroun SG, Chen YR, Chang L, Wu AT, Chang FC, Lin YW, Lin HJ, Anand A, Unnikrishnan B, Nain A, Huang CC. Aminoglycoside-mimicking carbonized polymer dots for bacteremia treatment. Nanoscale 2022. [PMID: 35913451 DOI: 10.1039/d2nr01959k] [Reference Citation Analysis]
|
11 |
Li P, Sun L, Xue S, Qu D, An L, Wang X, Sun Z. Recent advances of carbon dots as new antimicrobial agents. SmartMat 2022;3:226-48. [DOI: 10.1002/smm2.1131] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
12 |
Distefano A, Calì F, Gaeta M, Tuccitto N, Auditore A, Licciardello A, D'Urso A, Lee KJ, Monasson O, Peroni E, Grasso G. Carbon dots surface chemistry drives fluorescent properties: New tools to distinguish isobaric peptides. J Colloid Interface Sci 2022;625:405-14. [PMID: 35724463 DOI: 10.1016/j.jcis.2022.06.050] [Reference Citation Analysis]
|
13 |
Vibhute A, Nille O, Kolekar G, Rohiwal S, Patil S, Lee S, Tiwari AP. Fluorescent Carbon Quantum Dots Functionalized by Poly L-Lysine: Efficient Material for Antibacterial, Bioimaging and Antiangiogenesis Applications. J Fluoresc 2022. [PMID: 35689742 DOI: 10.1007/s10895-022-02977-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Jiang J, Xu Z, Chen J, Xu Z, Huang Y, Xi J, Fan L. Staphylococcus aureus-targeting peptide/surfactant assemblies for antibacterial therapy. Colloids Surf B Biointerfaces 2022;214:112444. [PMID: 35278861 DOI: 10.1016/j.colsurfb.2022.112444] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
15 |
Singh PK, Sharma K, Singh PK. A low cost, bulk synthesis of the thermally reduced graphene oxide in an aqueous solution of sulphuric acid & hydrogen peroxide via electrochemical method. Inorganic Chemistry Communications 2022;140:109378. [DOI: 10.1016/j.inoche.2022.109378] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
16 |
Lin R, Cheng S, Tan M. Green synthesis of fluorescent carbon dots with antibacterial activity and their application in Atlantic mackerel (Scomber scombrus) storage. Food Funct 2022. [PMID: 35107471 DOI: 10.1039/d1fo03426j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
17 |
Sviridova E, Barras A, Addad A, Plotnikov E, Di Martino A, Deresmes D, Nikiforova K, Trusova M, Szunerits S, Guselnikova O, Postnikov P, Boukherroub R. Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity. Materials Science and Engineering: C 2022. [DOI: 10.1016/j.msec.2022.112697] [Reference Citation Analysis]
|
18 |
Zhao C, Wang X, Yu L, Wu L, Hao X, Liu Q, Lin L, Huang Z, Ruan Z, Weng S, Liu A, Lin X. Quaternized carbon quantum dots with broad-spectrum antibacterial activity for the treatment of wounds infected with mixed bacteria. Acta Biomater 2022;138:528-44. [PMID: 34775123 DOI: 10.1016/j.actbio.2021.11.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
|
19 |
M P A, Pardhiya S, Rajamani P. Carbon Dots: An Excellent Fluorescent Probe for Contaminant Sensing and Remediation. Small 2022;18:e2105579. [PMID: 35001502 DOI: 10.1002/smll.202105579] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
20 |
Chan MH, Chen BG, Ngo LT, Huang WT, Li CH, Liu RS, Hsiao M. Natural Carbon Nanodots: Toxicity Assessment and Theranostic Biological Application. Pharmaceutics 2021;13:1874. [PMID: 34834289 DOI: 10.3390/pharmaceutics13111874] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
21 |
Liu S, Quan T, Yang L, Deng L, Kang X, Gao M, Xia Z, Li X, Gao D. N,Cl-Codoped Carbon Dots from Impatiens balsamina L. Stems and a Deep Eutectic Solvent and Their Applications for Gram-Positive Bacteria Identification, Antibacterial Activity, Cell Imaging, and ClO- Sensing. ACS Omega 2021;6:29022-36. [PMID: 34746591 DOI: 10.1021/acsomega.1c04078] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Huang J, Wang J, Hao Z, Li C, Wang B, Qu Y. Fabrication of N-CQDs@W18O49 heterojunction with enhanced charge separation and photocatalytic performance under full-spectrum light irradiation. Chinese Chemical Letters 2021;32:3180-4. [DOI: 10.1016/j.cclet.2021.03.018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
23 |
Davi L, Silva M, Ferreira R, Muniz W, Ribeiro A, Lima D, de Oliveira I, Barbosa C. Multifunctional carbon dots derived from dansyl chloride for ratiometric thermal sensor and reactive oxygen generation. Dyes and Pigments 2021;194:109549. [DOI: 10.1016/j.dyepig.2021.109549] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
24 |
Sun B, Wu F, Zhang Q, Chu X, Wang Z, Huang X, Li J, Yao C, Zhou N, Shen J. Insight into the effect of particle size distribution differences on the antibacterial activity of carbon dots. J Colloid Interface Sci 2021;584:505-19. [PMID: 33129160 DOI: 10.1016/j.jcis.2020.10.015] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 10.0] [Reference Citation Analysis]
|