BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: García Calavia P, Chambrier I, Cook MJ, Haines AH, Field RA, Russell DA. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J Colloid Interface Sci 2018;512:249-59. [PMID: 29073466 DOI: 10.1016/j.jcis.2017.10.030] [Cited by in Crossref: 60] [Cited by in F6Publishing: 47] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Elbanna M, Chowdhury NN, Rhome R, Fishel ML. Clinical and Preclinical Outcomes of Combining Targeted Therapy With Radiotherapy. Front Oncol 2021;11:749496. [PMID: 34733787 DOI: 10.3389/fonc.2021.749496] [Reference Citation Analysis]
2 Chen S, Lei S, Wu B, Yang W. Preparation of graphene-supported-metal-phthalocyanine and mechanistic understanding of its catalytic nature at molecular level. Journal of Colloid and Interface Science 2022;622:708-18. [DOI: 10.1016/j.jcis.2022.04.168] [Reference Citation Analysis]
3 Nath S, Pigula M, Khan AP, Hanna W, Ruhi MK, Dehkordy FM, Pushpavanam K, Rege K, Moore K, Tsujita Y, Conrad C, Inci F, Carmen MGD, Franco W, Celli JP, Demirci U, Hasan T, Huang HC, Rizvi I. Flow-induced Shear Stress Confers Resistance to Carboplatin in an Adherent Three-Dimensional Model for Ovarian Cancer: A Role for EGFR-Targeted Photoimmunotherapy Informed by Physical Stress. J Clin Med 2020;9:E924. [PMID: 32231055 DOI: 10.3390/jcm9040924] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
4 Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020;25:E5317. [PMID: 33202648 DOI: 10.3390/molecules25225317] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Feng L, Zhong M, Zhang S, Wang M, Sun ZY, Chen Q. Synthesis of water-soluble fluorescent polymeric glycoconjugate for the detection of cholera toxin. Des Monomers Polym 2019;22:150-8. [PMID: 31496925 DOI: 10.1080/15685551.2019.1654695] [Reference Citation Analysis]
6 Terefinko D, Dzimitrowicz A, Bielawska-Pohl A, Klimczak A, Pohl P, Jamroz P. The Influence of Cold Atmospheric Pressure Plasma-Treated Media on the Cell Viability, Motility, and Induction of Apoptosis in Human Non-Metastatic (MCF7) and Metastatic (MDA-MB-231) Breast Cancer Cell Lines. Int J Mol Sci 2021;22:3855. [PMID: 33917790 DOI: 10.3390/ijms22083855] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zhang J, Ning L, Huang J, Zhang C, Pu K. Activatable molecular agents for cancer theranostics. Chem Sci 2019;11:618-30. [PMID: 34123034 DOI: 10.1039/c9sc05460j] [Cited by in Crossref: 48] [Cited by in F6Publishing: 5] [Article Influence: 16.0] [Reference Citation Analysis]
8 Montaseri H, Kruger CA, Abrahamse H. Inorganic Nanoparticles Applied for Active Targeted Photodynamic Therapy of Breast Cancer. Pharmaceutics 2021;13:296. [PMID: 33668307 DOI: 10.3390/pharmaceutics13030296] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
9 Yan S, Guo H, Su J, Chen J, Song X, Huang M, Zhang J, Chen Z. Effects of hydroxyl radicals produced by a zinc phthalocyanine photosensitizer on tumor DNA. Dyes and Pigments 2020;173:107894. [DOI: 10.1016/j.dyepig.2019.107894] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
10 Tan BL, Norhaizan ME, Chan LC. An Intrinsic Mitochondrial Pathway Is Required for Phytic Acid-Chitosan-Iron Oxide Nanocomposite (Phy-CS-MNP) to Induce G₀/G₁ Cell Cycle Arrest and Apoptosis in the Human Colorectal Cancer (HT-29) Cell Line. Pharmaceutics 2018;10:E198. [PMID: 30360519 DOI: 10.3390/pharmaceutics10040198] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
11 García Calavia P, Bruce G, Pérez-García L, Russell DA. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem Photobiol Sci 2018;17:1534-52. [PMID: 30118115 DOI: 10.1039/c8pp00271a] [Cited by in Crossref: 46] [Cited by in F6Publishing: 12] [Article Influence: 11.5] [Reference Citation Analysis]
12 Smith CB, Days LC, Alajroush DR, Faye K, Khodour Y, Beebe SJ, Holder AA. Photodynamic Therapy of Inorganic Complexes for the Treatment of Cancer. Photochem Photobiol 2021. [PMID: 34121188 DOI: 10.1111/php.13467] [Reference Citation Analysis]
13 Goddard ZR, Beekman AM, Cominetti MMD, O'Connell MA, Chambrier I, Cook MJ, Marín MJ, Russell DA, Searcey M. Peptide directed phthalocyanine-gold nanoparticles for selective photodynamic therapy of EGFR overexpressing cancers. RSC Med Chem 2020;12:288-92. [PMID: 34041483 DOI: 10.1039/d0md00284d] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Sui B, Cheng C, Shi S, Wang M, Xu P. Esterase-activatable and GSH-responsive Triptolide Nano-prodrug for the Eradication of Pancreatic Cancer. Adv Nanobiomed Res 2021;1:2100040. [PMID: 34870282 DOI: 10.1002/anbr.202100040] [Reference Citation Analysis]
15 Goddard ZR, Marín MJ, Russell DA, Searcey M. Active targeting of gold nanoparticles as cancer therapeutics. Chem Soc Rev 2020;49:8774-89. [PMID: 33089858 DOI: 10.1039/d0cs01121e] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
16 Bandyopadhyay A, Roy B, Shaw P, Mondal P, Mondal MK, Chowdhury P, Bhattacharya S, Chattopadhyay A. Chitosan-gold nanoparticles trigger apoptosis in human breast cancer cells in vitro. Nucleus 2021;64:79-92. [DOI: 10.1007/s13237-020-00328-x] [Reference Citation Analysis]
17 Yang Y, Zheng X, Chen L, Gong X, Yang H, Duan X, Zhu Y. Multifunctional Gold Nanoparticles in Cancer Diagnosis and Treatment. IJN 2022;Volume 17:2041-67. [DOI: 10.2147/ijn.s355142] [Reference Citation Analysis]
18 Hernando PJ, Dedola S, Marín MJ, Field RA. Recent Developments in the Use of Glyconanoparticles and Related Quantum Dots for the Detection of Lectins, Viruses, Bacteria and Cancer Cells. Front Chem 2021;9:668509. [PMID: 34350156 DOI: 10.3389/fchem.2021.668509] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Zhang M, Shao S, Yue H, Wang X, Zhang W, Chen F, Zheng L, Xing J, Qin Y. High Stability Au NPs: From Design to Application in Nanomedicine. Int J Nanomedicine 2021;16:6067-94. [PMID: 34511906 DOI: 10.2147/IJN.S322900] [Reference Citation Analysis]
20 Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021;341:733-52. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Reference Citation Analysis]
21 Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. CMC 2019;26:6349-98. [DOI: 10.2174/0929867326666190104164653] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
22 Tran P, Lee S, Kim D, Pyo Y, Park J. Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J Pharm Investig 2020;50:261-70. [DOI: 10.1007/s40005-019-00459-7] [Cited by in Crossref: 28] [Cited by in F6Publishing: 12] [Article Influence: 9.3] [Reference Citation Analysis]
23 Ding H, Cai Y, Chen J, Lu T, Wen W, Nie G, Wang X. Cryodesiccation-driven crystallization preparation approach for zinc(II)-phthalocyanine nanodots in cancer photodynamic therapy and photoacoustic imaging. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3286-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
24 Borzęcka W, Domiński A, Kowalczuk M. Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. Nanomaterials (Basel) 2021;11:2426. [PMID: 34578740 DOI: 10.3390/nano11092426] [Reference Citation Analysis]
25 Guan S, Zhang Q, Bao J, Hu R, Czech T, Tang J. Recognition Sites for Cancer-targeting Drug Delivery Systems. Curr Drug Metab 2019;20:815-34. [PMID: 31580248 DOI: 10.2174/1389200220666191003161114] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
26 Yang Z, Liu X, Wang X, Wang P, Ruan S, Xie A, Shen Y, Zhu M. 4-in-1 phototheranostics: PDA@CoPA-LA nanocomposite for photothermal imaging/photothermal/in-situ O2 generation/photodynamic combination therapy. Chemical Engineering Journal 2020;387:124113. [DOI: 10.1016/j.cej.2020.124113] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
27 Kubheka G, Babu B, Prinsloo E, Kobayashi N, Mack J, Nyokong T. Photodynamic activity of 2,6-dibrominated dimethylaminophenylbuta-1,3-dienylBODIPY dyes. J Porphyrins Phthalocyanines 2021;25:47-55. [DOI: 10.1142/s1088424620500509] [Reference Citation Analysis]
28 Borran AA, Aghanejad A, Farajollahi A, Barar J, Omidi Y. Gold nanoparticles for radiosensitizing and imaging of cancer cells. Radiation Physics and Chemistry 2018;152:137-44. [DOI: 10.1016/j.radphyschem.2018.08.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
29 Qidwai A, Annu, Nabi B, Kotta S, Narang JK, Baboota S, Ali J. Role of nanocarriers in photodynamic therapy. Photodiagnosis and Photodynamic Therapy 2020;30:101782. [DOI: 10.1016/j.pdpdt.2020.101782] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
30 Gong F, Yang N, Wang X, Zhao Q, Chen Q, Liu Z, Cheng L. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today 2020;32:100851. [DOI: 10.1016/j.nantod.2020.100851] [Cited by in Crossref: 68] [Cited by in F6Publishing: 38] [Article Influence: 34.0] [Reference Citation Analysis]
31 Chen F, Huang G. Application of glycosylation in targeted drug delivery. European Journal of Medicinal Chemistry 2019;182:111612. [DOI: 10.1016/j.ejmech.2019.111612] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
32 Sun J, Kormakov S, Liu Y, Huang Y, Wu D, Yang Z. Recent Progress in Metal-Based Nanoparticles Mediated Photodynamic Therapy. Molecules 2018;23:E1704. [PMID: 30002333 DOI: 10.3390/molecules23071704] [Cited by in Crossref: 39] [Cited by in F6Publishing: 17] [Article Influence: 9.8] [Reference Citation Analysis]
33 Zhu L, Kuang Z, Song P, Li W, Gui L, Yang K, Ge F, Tao Y, Zhang W. Gold nanorod-loaded thermosensitive liposomes facilitate the targeted release of ruthenium(II) polypyridyl complexes with anti-tumor activity. Nanotechnology 2021;32. [PMID: 34352731 DOI: 10.1088/1361-6528/ac1afc] [Reference Citation Analysis]
34 Shanmugapriya K, Kang HW. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. Materials Science and Engineering: C 2019;105:110110. [DOI: 10.1016/j.msec.2019.110110] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 8.7] [Reference Citation Analysis]
35 Salabat A, Mirhoseini F. A novel and simple microemulsion method for synthesis of biocompatible functionalized gold nanoparticles. Journal of Molecular Liquids 2018;268:849-53. [DOI: 10.1016/j.molliq.2018.07.112] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.8] [Reference Citation Analysis]
36 Zhang T, Fu L, Zheng X, Liu M, Pei Q, Wang X, Liu S. Two-photon excited organic nanoparticles for chemo-photodynamic therapy. Dyes and Pigments 2019;167:195-203. [DOI: 10.1016/j.dyepig.2019.04.038] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
37 Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front Pharmacol 2018;9:1162. [PMID: 30405405 DOI: 10.3389/fphar.2018.01162] [Cited by in Crossref: 266] [Cited by in F6Publishing: 208] [Article Influence: 66.5] [Reference Citation Analysis]
38 Roguin LP, Chiarante N, García Vior MC, Marino J. Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy. Int J Biochem Cell Biol 2019;114:105575. [PMID: 31362060 DOI: 10.1016/j.biocel.2019.105575] [Cited by in Crossref: 38] [Cited by in F6Publishing: 20] [Article Influence: 12.7] [Reference Citation Analysis]
39 Thipe VC, Panjtan Amiri K, Bloebaum P, Raphael Karikachery A, Khoobchandani M, Katti KK, Jurisson SS, Katti KV. Development of resveratrol-conjugated gold nanoparticles: interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. Int J Nanomedicine 2019;14:4413-28. [PMID: 31417252 DOI: 10.2147/IJN.S204443] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 9.3] [Reference Citation Analysis]
40 Shokurov AV, Yagodin AV, Martynov AG, Gorbunova YG, Selektor SL. Phthalocyanine Monolayers Self-Assembled Directly from its Thiobenzoyl Derivative. ECS J Solid State Sci Technol 2020;9:051006. [DOI: 10.1149/2162-8777/ab9a5e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
41 García Calavia P, Marín MJ, Chambrier I, Cook MJ, Russell DA. Towards optimisation of surface enhanced photodynamic therapy of breast cancer cells using gold nanoparticle–photosensitiser conjugates. Photochem Photobiol Sci 2018;17:281-9. [DOI: 10.1039/c7pp00225d] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 4.3] [Reference Citation Analysis]
42 Kirar S, Thakur NS, Reddy YN, Banerjee UC, Bhaumik J. Insights on the polypyrrole based nanoformulations for photodynamic therapy. J Porphyrins Phthalocyanines 2021;25:605-22. [DOI: 10.1142/s1088424621300032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Fan M, Han Y, Gao S, Yan H, Cao L, Li Z, Liang XJ, Zhang J. Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics 2020;10:4944-57. [PMID: 32308760 DOI: 10.7150/thno.42471] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 15.0] [Reference Citation Analysis]
44 Li D, Hu QY, Wang XZ, Li X, Hu JQ, Zheng BY, Ke MR, Huang JD. A non-aggregated silicon(IV) phthalocyanine-lactose conjugate for photodynamic therapy. Bioorg Med Chem Lett 2020;30:127164. [PMID: 32291134 DOI: 10.1016/j.bmcl.2020.127164] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
45 Leng F, Liu F, Yang Y, Wu Y, Tian W. Strategies on Nanodiagnostics and Nanotherapies of the Three Common Cancers. Nanomaterials (Basel) 2018;8:E202. [PMID: 29597315 DOI: 10.3390/nano8040202] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
46 Krajczewski J, Rucińska K, Townley HE, Kudelski A. Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen. Photodiagnosis and Photodynamic Therapy 2019;26:162-78. [DOI: 10.1016/j.pdpdt.2019.03.016] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
47 Zhu F, Wang BR, Zhu ZF, Wang SQ, Chai CX, Shang D, Li M. Photodynamic therapy: A next alternative treatment strategy for hepatocellular carcinoma? World J Gastrointest Surg 2021; 13(12): 1523-1535 [DOI: 10.4240/wjgs.v13.i12.1523] [Reference Citation Analysis]
48 He Y, Yang M, Zhao S, Cong C, Li X, Cheng X, Yang J, Gao D. Regulatory Mechanism of Localized Surface Plasmon Resonance Based on Gold Nanoparticles-Coated Paclitaxel Nanoliposomes and Their Antitumor Efficacy. ACS Sustainable Chem Eng 2018;6:13543-50. [DOI: 10.1021/acssuschemeng.8b03711] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
49 Kim D, Rahhal N, Rademacher C. Elucidating Carbohydrate-Protein Interactions Using Nanoparticle-Based Approaches. Front Chem 2021;9:669969. [PMID: 34046397 DOI: 10.3389/fchem.2021.669969] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
50 Gong B, Shen Y, Li H, Li X, Huan X, Zhou J, Chen Y, Wu J, Li W. Thermo-responsive polymer encapsulated gold nanorods for single continuous wave laser-induced photodynamic/photothermal tumour therapy. J Nanobiotechnology 2021;19:41. [PMID: 33557807 DOI: 10.1186/s12951-020-00754-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
51 Rivas Aiello MB, Castrogiovanni D, Parisi J, Azcárate JC, García Einschlag FS, Gensch T, Bosio GN, Mártire DO. Photodynamic Therapy in HeLa Cells Incubated with Riboflavin and Pectin-coated Silver Nanoparticles. Photochem Photobiol 2018;94:1159-66. [PMID: 29978491 DOI: 10.1111/php.12974] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
52 Ahmed F, Faisal SM, Ahmed A, Husain Q. Beta galactosidase mediated bio-enzymatically synthesized nano-gold with aggrandized cytotoxic potential against pathogenic bacteria and cancer cells. Journal of Photochemistry and Photobiology B: Biology 2020;209:111923. [DOI: 10.1016/j.jphotobiol.2020.111923] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
53 Sorrin AJ, Kemal Ruhi M, Ferlic NA, Karimnia V, Polacheck WJ, Celli JP, Huang HC, Rizvi I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem Photobiol 2020;96:232-59. [PMID: 31895481 DOI: 10.1111/php.13209] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
54 Kruger CA, Abrahamse H. Utilisation of Targeted Nanoparticle Photosensitiser Drug Delivery Systems for the Enhancement of Photodynamic Therapy. Molecules 2018;23:E2628. [PMID: 30322132 DOI: 10.3390/molecules23102628] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
55 Afzal M, Ameeduzzafar, Alharbi KS, Alruwaili NK, Al-Abassi FA, Al-Malki AAL, Kazmi I, Kumar V, Kamal MA, Nadeem MS, Aslam M, Anwar F. Nanomedicine in treatment of breast cancer - A challenge to conventional therapy. Semin Cancer Biol 2021;69:279-92. [PMID: 31870940 DOI: 10.1016/j.semcancer.2019.12.016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
56 Zou T, Lu W, Mezhuev Y, Lan M, Li L, Liu F, Cai T, Wu X, Cai Y. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Eur J Pharm Biopharm 2021;166:30-43. [PMID: 34098073 DOI: 10.1016/j.ejpb.2021.05.029] [Reference Citation Analysis]
57 Liu Y, Huang P, Hou X, Yan F, Jiang Z, Shi J, Xie X, Shen J, Fan Q, Wang Z, Feng N. Hybrid curcumin-phospholipid complex-near-infrared dye oral drug delivery system to inhibit lung metastasis of breast cancer. Int J Nanomedicine 2019;14:3311-30. [PMID: 31190795 DOI: 10.2147/IJN.S200847] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
58 Su L, Feng Y, Wei K, Xu X, Liu R, Chen G. Carbohydrate-Based Macromolecular Biomaterials. Chem Rev 2021. [PMID: 34338501 DOI: 10.1021/acs.chemrev.0c01338] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Soto KM, Mendoza S, López-romero JM, Gasca-tirado JR, Manzano-ramírez A. Gold nanoparticles: synthesis, application in colon cancer therapy and new approaches - review. Green Chemistry Letters and Reviews 2021;14:665-78. [DOI: 10.1080/17518253.2021.1998648] [Reference Citation Analysis]