BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Neidlin M, Corsini C, Sonntag SJ, Schulte-Eistrup S, Schmitz-Rode T, Steinseifer U, Pennati G, Kaufmann TAS. Hemodynamic analysis of outflow grafting positions of a ventricular assist device using closed-loop multiscale CFD simulations: Preliminary results. J Biomech 2016;49:2718-25. [PMID: 27298155 DOI: 10.1016/j.jbiomech.2016.06.003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Gallo M, Spigolon L, Bejko J, Gerosa G, Bottio T. How to evaluate the outflow tract of LVAD after minimally invasive implantation by 3D CT-scan. Artif Organs 2020;44:1306-9. [PMID: 32668042 DOI: 10.1111/aor.13777] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Selmi M, Chiu W, Chivukula VK, Melisurgo G, Beckman JA, Mahr C, Aliseda A, Votta E, Redaelli A, Slepian MJ, Bluestein D, Pappalardo F, Consolo F. Blood damage in Left Ventricular Assist Devices: Pump thrombosis or system thrombosis? Int J Artif Organs 2019;42:113-24. [DOI: 10.1177/0391398818806162] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
3 Caruso MV, Renzulli A, Fragomeni G. Influence of IABP-Induced Abdominal Occlusions on Aortic Hemodynamics: A Patient-Specific Computational Evaluation. ASAIO J 2017;63:161-7. [PMID: 27861423 DOI: 10.1097/MAT.0000000000000479] [Cited by in Crossref: 8] [Article Influence: 1.3] [Reference Citation Analysis]
4 Liao S, Simpson B, Neidlin M, Kaufmann TA, Li Z, Woodruff MA, Gregory SD. Numerical prediction of thrombus risk in an anatomically dilated left ventricle: the effect of inflow cannula designs. Biomed Eng Online 2016;15:136. [PMID: 28155674 DOI: 10.1186/s12938-016-0262-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
5 Sun P, Bozkurt S, Sorguven E. Computational analyses of aortic blood flow under varying speed CF-LVAD support. Comput Biol Med 2020;127:104058. [PMID: 33091606 DOI: 10.1016/j.compbiomed.2020.104058] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Imamura T, Adatya S, Chung B, Nguyen A, Rodgers D, Sayer G, Sarswat N, Kim G, Raikhelkar J, Ota T, Song T, Juricek C, Medvedofsky D, Jeevanandam V, Lang R, Estep JD, Burkhoff D, Uriel N. Cannula and Pump Positions Are Associated With Left Ventricular Unloading and Clinical Outcome in Patients With HeartWare Left Ventricular Assist Device. J Card Fail 2018;24:159-66. [PMID: 28982636 DOI: 10.1016/j.cardfail.2017.09.013] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
7 Scardulla F, Bellavia D, D'acquisto L, Raffa GM, Pasta S. Particle image velocimetry study of the celiac trunk hemodynamic induced by continuous-flow left ventricular assist device. Medical Engineering & Physics 2017;47:47-54. [DOI: 10.1016/j.medengphy.2017.06.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
8 Yuan HW, Yao JX, Huang SY, Cui MY, Ji RJ, Li JR, Chen LH. Asymmetric distribution of pathogenic low wall shear stress of the bilateral subclavian arteries: two case reports. J Int Med Res 2021;49:3000605211042503. [PMID: 34515575 DOI: 10.1177/03000605211042503] [Reference Citation Analysis]
9 Thaker R, Araujo-Gutierrez R, Marcos-Abdala HG, Agrawal T, Fida N, Kassi M. Innovative Modeling Techniques and 3D Printing in Patients with Left Ventricular Assist Devices: A Bridge from Bench to Clinical Practice. J Clin Med 2019;8:E635. [PMID: 31075841 DOI: 10.3390/jcm8050635] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
10 Liao S, Neidlin M, Li Z, Simpson B, Gregory SD. Ventricular flow dynamics with varying LVAD inflow cannula lengths: In-silico evaluation in a multiscale model. J Biomech 2018;72:106-15. [PMID: 29567308 DOI: 10.1016/j.jbiomech.2018.02.038] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
11 Scardulla F, Pasta S, D’acquisto L, Sciacca S, Agnese V, Vergara C, Quarteroni A, Clemenza F, Bellavia D, Pilato M. Shear stress alterations in the celiac trunk of patients with a continuous-flow left ventricular assist device as shown by in-silico and in-vitro flow analyses. The Journal of Heart and Lung Transplantation 2017;36:906-13. [DOI: 10.1016/j.healun.2017.03.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
12 Yoshida S, Toda K, Miyagawa S, Yoshikawa Y, Hata H, Yoshioka D, Kainuma S, Kawamura T, Kawamura A, Nakatani S, Sawa Y. Impact of turbulent blood flow in the aortic root on de novo aortic insufficiency during continuous‐flow left ventricular‐assist device support. Artif Organs 2020;44:883-91. [DOI: 10.1111/aor.13671] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Sonntag SJ, Lipinski E, Neidlin M, Hugenroth K, Benkowski R, Motomura T, Kaufmann TAS. Virtual Fitting and Hemodynamic Simulation of the EVAHEART 2 Left Ventricular Assist Device and Double-Cuff Tipless Inflow Cannula. ASAIO Journal 2019;65:698-706. [DOI: 10.1097/mat.0000000000000867] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
14 Neidlin M, Liao S, Li Z, Simpson B, Kaye DM, Steinseifer U, Gregory S. Understanding the influence of left ventricular assist device inflow cannula alignment and the risk of intraventricular thrombosis. Biomed Eng Online 2021;20:47. [PMID: 33975591 DOI: 10.1186/s12938-021-00884-6] [Reference Citation Analysis]
15 Schmidt T, Rosenthal D, Reinhartz O, Riemer K, He F, Hsia T, Marsden A, Kung E. Superior performance of continuous over pulsatile flow ventricular assist devices in the single ventricle circulation: A computational study. Journal of Biomechanics 2017;52:48-54. [DOI: 10.1016/j.jbiomech.2016.12.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
16 Pauls JP, Bartnikowski N, Jansen S, Lim E, Dasse K. Preclinical evaluation. Mechanical Circulatory and Respiratory Support. Elsevier; 2018. pp. 407-38. [DOI: 10.1016/b978-0-12-810491-0.00013-8] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
17 Leguy C. Mathematical and Computational Modelling of Blood Pressure and Flow. In: Golemati S, Nikita KS, editors. Cardiovascular Computing—Methodologies and Clinical Applications. Singapore: Springer; 2019. pp. 231-46. [DOI: 10.1007/978-981-10-5092-3_11] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
18 Chivukula VK, Beckman JA, Li S, Masri SC, Levy WC, Lin S, Cheng RK, Farris SD, Wood G, Dardas TF, Kirkpatrick JN, Koomalsingh K, Zimpfer D, Mackensen GB, Chassagne F, Mahr C, Aliseda A. Left Ventricular Assist Device Inflow Cannula Insertion Depth Influences Thrombosis Risk. ASAIO Journal 2020;66:766-73. [DOI: 10.1097/mat.0000000000001068] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]