BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shi Y, Korakianitis T, Bowles C. Numerical simulation of cardiovascular dynamics with different types of VAD assistance. J Biomech 2007;40:2919-33. [PMID: 17433816 DOI: 10.1016/j.jbiomech.2007.02.023] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Ruiz P, Rezaienia MA, Rahideh A, Keeble TR, Rothman MT, Korakianitis T. In vitro cardiovascular system emulator (bioreactor) for the simulation of normal and diseased conditions with and without mechanical circulatory support. Artif Organs 2013;37:549-60. [PMID: 23758568 DOI: 10.1111/aor.12109] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
2 Shahraki ZH, Oscuii HN. Numerical investigation of three patterns of motion in an electromagnetic pulsatile VAD. ASAIO J 2014;60:304-10. [PMID: 24469292 DOI: 10.1097/MAT.0000000000000051] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
3 Miyamoto T, Horvath DJ, Horvath DW, Karimov JH, Byram N, Kuban BD, Fukamachi K. Simulated Performance of the Cleveland Clinic Continuous-Flow Total Artificial Heart Using the Virtual Mock Loop. ASAIO J 2019;65:565-72. [PMID: 30074965 DOI: 10.1097/MAT.0000000000000857] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
4 Capoccia M, Marconi S, Singh SA, Pisanelli DM, De Lazzari C. Simulation as a preoperative planning approach in advanced heart failure patients. A retrospective clinical analysis. Biomed Eng Online 2018;17:52. [PMID: 29720187 DOI: 10.1186/s12938-018-0491-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
5 Capoccia M. Development and Characterization of the Arterial Windkessel and Its Role During Left Ventricular Assist Device Assistance: Arterial Windkessel and Its Role. Artificial Organs 2015;39:E138-53. [DOI: 10.1111/aor.12532] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 2.6] [Reference Citation Analysis]
6 Son J, Du D, Du Y. Modelling and control of a failing heart managed by a left ventricular assist device. Biocybernetics and Biomedical Engineering 2020;40:559-73. [DOI: 10.1016/j.bbe.2020.01.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Horvath DJ, Horvath DW, Karimov JH, Kuban BD, Miyamoto T, Fukamachi K. A simulation tool for mechanical circulatory support device interaction with diseased states. J Artif Organs 2020;23:124-32. [DOI: 10.1007/s10047-020-01155-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Mahmood MN, Fresiello L, Di Molfetta A, Ferrari G. A Modeling Tool to Study the Combined Effects of Drug Administration and Lvad Assistance in Pathophysiological Circulatory Conditions. Int J Artif Organs 2014;37:824-33. [DOI: 10.5301/ijao.5000366] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
9 Shi Y, Lawford P, Hose R. Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed Eng Online 2011;10:33. [PMID: 21521508 DOI: 10.1186/1475-925X-10-33] [Cited by in Crossref: 153] [Cited by in F6Publishing: 51] [Article Influence: 13.9] [Reference Citation Analysis]
10 Her K, Kim JY, Lim KM, Choi SW. Windkessel model of hemodynamic state supported by a pulsatile ventricular assist device in premature ventricle contraction. Biomed Eng Online 2018;17:18. [PMID: 29394944 DOI: 10.1186/s12938-018-0440-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Gohean JR, George MJ, Pate TD, Kurusz M, Longoria RG, Smalling RW. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device. ASAIO J 2013;59:107-16. [PMID: 23438771 DOI: 10.1097/MAT.0b013e31827db6d4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
12 Park SM, Lee JH, Choi SW. Detection of Premature Ventricular Contractions on a Ventricular Electrocardiogram for Patients With Left Ventricular Assist Devices: Thoughts and Progress. Artificial Organs 2014;38:1040-6. [DOI: 10.1111/aor.12306] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
13 Jansen-park S, Mahmood MN, Müller I, Turnhoff LK, Schmitz-rode T, Steinseifer U, Sonntag SJ. Effects of Interaction Between Ventricular Assist Device Assistance and Autoregulated Mock Circulation Including Frank-Starling Mechanism and Baroreflex: Effects of Interaction in an Autoregulated MHCL. Artif Organs 2016;40:981-91. [DOI: 10.1111/aor.12635] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
14 Rezaienia MA, Rahideh A, Rothman MT, Sell SA, Mitchell K, Korakianitis T. In vitro comparison of two different mechanical circulatory support devices installed in series and in parallel. Artif Organs 2014;38:800-9. [PMID: 24721023 DOI: 10.1111/aor.12288] [Reference Citation Analysis]
15 Miyamoto T, Horvath DJ, Horvath DW, Kuban BD, Fukamachi K, Karimov JH. Analysis of Cleveland Clinic continuous-flow total artificial heart performance using the Virtual Mock Loop: Comparison with an in vivo study. Artif Organs 2020;44:375-83. [PMID: 31573677 DOI: 10.1111/aor.13574] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
16 Lim KM, Constantino J, Gurev V, Zhu R, Shim EB, Trayanova NA. Comparison of the effects of continuous and pulsatile left ventricular-assist devices on ventricular unloading using a cardiac electromechanics model. J Physiol Sci 2012;62:11-9. [PMID: 22076841 DOI: 10.1007/s12576-011-0180-9] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
17 Brown AG, Shi Y, Arndt A, Müller J, Lawford P, Hose DR. Importance of realistic LVAD profiles for assisted aortic simulations: evaluation of optimal outflow anastomosis locations. Comput Methods Biomech Biomed Engin 2012;15:669-80. [PMID: 21409657 DOI: 10.1080/10255842.2011.556628] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
18 Ferrari G, Kozarski M, Zieliński K, Fresiello L, Di Molfetta A, Górczyńska K, Pałko KJ, Darowski M. A modular computational circulatory model applicable to VAD testing and training. J Artif Organs 2012;15:32-43. [DOI: 10.1007/s10047-011-0606-4] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
19 Schmidt T, Rosenthal D, Reinhartz O, Riemer K, He F, Hsia T, Marsden A, Kung E. Superior performance of continuous over pulsatile flow ventricular assist devices in the single ventricle circulation: A computational study. Journal of Biomechanics 2017;52:48-54. [DOI: 10.1016/j.jbiomech.2016.12.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
20 King JM, Bergeron CA, Taylor CE. Development of an adaptive pulmonary simulator for in vitro analysis of patient populations and patient-specific data. Computer Methods and Programs in Biomedicine 2018;161:93-102. [DOI: 10.1016/j.cmpb.2018.04.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
21 Choi SW, Nam KW, Lim KM, Shim EB, Won YS, Woo HM, Kwak HH, Noh MR, Kim IY, Park SM. Effect of counter-pulsation control of a pulsatile left ventricular assist device on working load variations of the native heart. Biomed Eng Online 2014;13:35. [PMID: 24708625 DOI: 10.1186/1475-925X-13-35] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
22 Lim KM, Lee JS, Song JH, Youn CH, Choi JS, Shim EB. Theoretical estimation of cannulation methods for left ventricular assist device support as a bridge to recovery. J Korean Med Sci 2011;26:1591-8. [PMID: 22147996 DOI: 10.3346/jkms.2011.26.12.1591] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
23 Ferrari G, Kozarski M, Fresiello L, Di Molfetta A, Zieliński K, Górczyńska K, Pałko KJ, Darowski M. Continuous-flow pump model study: the effect on pump performance of pump characteristics and cardiovascular conditions. J Artif Organs 2013;16:149-56. [PMID: 23463355 DOI: 10.1007/s10047-013-0691-7] [Cited by in Crossref: 5] [Article Influence: 0.6] [Reference Citation Analysis]
24 Rezaienia MA, Rahideh A, Alhosseini Hamedani B, Bosak DEM, Zustiak S, Korakianitis T. Numerical and In Vitro Investigation of a Novel Mechanical Circulatory Support Device Installed in the Descending Aorta: Rotary Pump Investigation in the Descending Aorta. Artificial Organs 2015;39:502-13. [DOI: 10.1111/aor.12431] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
25 Horvath DJ, Horvath DW, Karimov JH, Byram N, Kuban BD, Miyamoto T, Fukamachi K. Use of a Mechanical Circulatory Support Simulation to Study Pump Interactions With the Variable Hemodynamic Environment. Artif Organs 2018;42:E420-7. [PMID: 30393881 DOI: 10.1111/aor.13287] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
26 Cappon F, Wu T, Papaioannou T, Du X, Hsu PL, Khir AW. Mock circulatory loops used for testing cardiac assist devices: A review of computational and experimental models. Int J Artif Organs 2021;44:793-806. [PMID: 34581613 DOI: 10.1177/03913988211045405] [Reference Citation Analysis]
27 Shi Y, Shi Y, Korakianitis T. Physiological control of an in-series connected pulsatile VAD: numerical simulation study. Comput Methods Biomech Biomed Engin 2011;14:995-1007. [PMID: 21161796 DOI: 10.1080/10255842.2010.504030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
28 Fresiello L, Zieliński K, Jacobs S, Di Molfetta A, Pałko KJ, Bernini F, Martin M, Claus P, Ferrari G, Trivella MG, Górczyńska K, Darowski M, Meyns B, Kozarski M. Reproduction of Continuous Flow Left Ventricular Assist Device Experimental Data by Means of a Hybrid Cardiovascular Model With Baroreflex Control: LVAD Assistance Simulation with a Hybrid Model. Artificial Organs 2014;38:456-68. [DOI: 10.1111/aor.12178] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
29 Ferrari G, Kozarski M, Gu Y, De Lazzari C, Di Molfetta A, Palko K, Zieliński K, Górczyńska K, Darowski M, Rakhorst G. Application of a user-friendly comprehensive circulatory model for estimation of hemodynamic and ventricular variables. Int J Artif Organs 2008;31:1043-54. [DOI: 10.1177/039139880803101208] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
30 Choi H, Lee H, Choi J, Lee JJ, Nam KW, Park JW, Park Y, Sun K, Lee H. Optimal Moving Angle of Pusher Plate in Occlusive-Type Pulsatile Blood Pump: NUMERICAL ANALYSIS OF PUSHER PLATE MOVEMENT. Artificial Organs 2010;34:554-60. [DOI: 10.1111/j.1525-1594.2010.01039.x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]