BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Corpas FJ, Palma JM. H2S signaling in plants and applications in agriculture. J Adv Res 2020;24:131-7. [PMID: 32292600 DOI: 10.1016/j.jare.2020.03.011] [Cited by in Crossref: 84] [Cited by in F6Publishing: 84] [Article Influence: 42.0] [Reference Citation Analysis]
Number Citing Articles
1 Sil P, Biswas AK. Influence of Some Chemicals in Mitigating Arsenic‐Induced Toxicity in Plants. Arsenic in Plants 2022. [DOI: 10.1002/9781119791461.ch12] [Reference Citation Analysis]
2 Kolupaev YE, Karpets YV, Shkliarevskyi MA, Yastreb TO, Plohovska SH, Yemets АI, Blume YB. Gasotransmitters in Plants: Mechanisms of Participation in Adaptive Responses. TOASJ 2022;16. [DOI: 10.2174/18743315-v16-e2207050] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Ranasinghe Arachchige NPR, Brown EM, Bowden NB. Sustained Release of Hydrogen Sulfide from Di(t-butanol)dithiophosphate Phenethylamine Salt Encapsulated into Poly(lactic acid) Microparticles to Enhance the Growth of Radish Plants. ACS Agric Sci Technol 2022. [DOI: 10.1021/acsagscitech.2c00179] [Reference Citation Analysis]
4 Wu G, Li S, Dong Y, Bi H, Ai X. Exogenous hydrogen sulfide improves chilling tolerance by regulating hydrogen peroxide production in cucumber seedlings. Hortic Environ Biotechnol . [DOI: 10.1007/s13580-022-00433-7] [Reference Citation Analysis]
5 Dawar K, Khan N, Fahad S, Alam SS, Khan S, Mian IA, Akbar WA. Effect of Sulfur and Zinc Nutrition on Yield and Uptake by Wheat. J Plant Growth Regul 2022;41:2338-2346. [DOI: 10.1007/s00344-021-10440-0] [Reference Citation Analysis]
6 Wang W, Ni Z, Thakur K, Cao S, Wei Z. Recent update on the mechanism of hydrogen sulfide improving the preservation of postharvest fruits and vegetables. Current Opinion in Food Science 2022. [DOI: 10.1016/j.cofs.2022.100906] [Reference Citation Analysis]
7 Huang T, Zhang W, Wang J, Cai Z, Shen Y, Chen J, Zhu L. H2S: A new gas with potential biotechnological applications in postharvest fruit and vegetable storage: An overview. Scientia Horticulturae 2022;300:111071. [DOI: 10.1016/j.scienta.2022.111071] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Havva EN, Kolupaev YE, Shkliarevskyi MA, Kokorev AI, Dmitriev AP. Hydrogen Sulfide Participation in the Formation of Wheat Seedlings’ Heat Resistance Under the Action of Hardening Temperature. Cytol Genet 2022;56:218-225. [DOI: 10.3103/s0095452722030045] [Reference Citation Analysis]
9 Muñoz-Vargas MA, González-Gordo S, Palma JM, Corpas FJ. H2S in Horticultural Plants: Endogenous Detection by an Electrochemical Sensor, Emission by a Gas Detector, and Its Correlation with L-Cysteine Desulfhydrase (LCD) Activity. Int J Mol Sci 2022;23:5648. [PMID: 35628468 DOI: 10.3390/ijms23105648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Kolupaev YE. Gasotransmitter Carbon Monoxide: Synthesis and Functions in Plants. Russ J Plant Physiol 2022;69. [DOI: 10.1134/s1021443722030074] [Reference Citation Analysis]
11 Khan MSS, Islam F, Ye Y, Ashline M, Wang D, Zhao B, Fu ZQ, Chen J. The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022;23:4272. [PMID: 35457090 DOI: 10.3390/ijms23084272] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Mathur P, Roy S, Nasir Khan M, Mukherjee S. Hydrogen sulphide (H2 S) in the hidden half: Role in root growth, stress signalling and rhizospheric interactions. Plant Biol (Stuttg) 2022. [PMID: 35334141 DOI: 10.1111/plb.13417] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Ozfidan-konakci C, Yildiztugay E, Arikan B, Elbasan F, Alp FN, Kucukoduk M. Hydrogen Sulfide Protects Damage From Methyl Viologen-Mediated Oxidative Stress by Improving Gas Exchange, Fluorescence Kinetics of Photosystem II, and Antioxidant System in Arabidopsis thaliana. J Plant Growth Regul. [DOI: 10.1007/s00344-022-10612-6] [Reference Citation Analysis]
14 Mondal S, Pramanik K, Panda D, Dutta D, Karmakar S, Bose B. Sulfur in Seeds: An Overview. Plants (Basel) 2022;11:450. [PMID: 35161431 DOI: 10.3390/plants11030450] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
15 Zhao Y, Zhao L, Hu S, Hou Y, Zheng Y, Jin P. Hydrogen sulfide: a luminous future in the postharvest preservation of fruits and vegetables. F 2022;0:1-11. [DOI: 10.48130/fmr-2022-0003] [Reference Citation Analysis]
16 Khan MN, Siddiqui ZH, Naeem M, Abbas ZK, Ansari MW. Nitric oxide and hydrogen sulfide interactions in plants under adverse environmental conditions. Emerging Plant Growth Regulators in Agriculture 2022. [DOI: 10.1016/b978-0-323-91005-7.00015-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Corpas FJ, Freschi L, Palma JM. ROS metabolism and ripening of fleshy fruits. Advances in Botanical Research 2022. [DOI: 10.1016/bs.abr.2022.08.024] [Reference Citation Analysis]
18 Jafar J, Hassan H, Shabala S, Ouyang B. Signaling molecules and transcriptional reprogramming for stomata operation under salt stress. Stomata Regulation and Water Use Efficiency in Plants under Saline Soil Conditions 2022. [DOI: 10.1016/bs.abr.2022.02.013] [Reference Citation Analysis]
19 Szőllősi R, Hodács VK. Physiological roles of hydrogen sulfide under heavy metal stress. Emerging Plant Growth Regulators in Agriculture 2022. [DOI: 10.1016/b978-0-323-91005-7.00014-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Mishra V, Singh VP. Implication of nitric oxide and hydrogen sulfide signalling in alleviating arsenate stress in rice seedlings. Environ Pollut 2021;291:117958. [PMID: 34547656 DOI: 10.1016/j.envpol.2021.117958] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
21 Choudhary AK, Singh S, Khatri N, Gupta R. Hydrogen sulphide: an emerging regulator of plant defence signalling. Plant Biol (Stuttg) 2021. [PMID: 34904345 DOI: 10.1111/plb.13376] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Raza A, Tabassum J, Mubarik MS, Anwar S, Zahra N, Sharif Y, Hafeez MB, Zhang C, Corpas FJ, Chen H. Hydrogen sulfide: an emerging component against abiotic stress in plants. Plant Biol (Stuttg) 2021. [PMID: 34870354 DOI: 10.1111/plb.13368] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
23 Tayal R, Kumar V, Irfan M. Harnessing the power of hydrogen sulphide (H2 S) for improving fruit quality traits. Plant Biol (Stuttg) 2021. [PMID: 34866296 DOI: 10.1111/plb.13372] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
24 Siddiqui MH, Alamri S, Mukherjee S, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Kalaji HM, Fahad S, Rajput VD, Narayan OP. Molybdenum and hydrogen sulfide synergistically mitigate arsenic toxicity by modulating defense system, nitrogen and cysteine assimilation in faba bean (Vicia faba L.) seedlings. Environ Pollut 2021;290:117953. [PMID: 34438168 DOI: 10.1016/j.envpol.2021.117953] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
25 Farman M, Nawaz F, Majeed S, Javeed HMR, Ahsan M, Ahmad KS, Aurangzaib M, Bukhari MA, Shehzad MA, Hussain MB. Silicon Seed Priming Combined with Foliar Spray of Sulfur Regulates Photosynthetic and Antioxidant Systems to Confer Drought Tolerance in Maize (Zea mays L.). Silicon. [DOI: 10.1007/s12633-021-01505-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
26 Ekinci M, Yildirim E, Turan M. Ameliorating effects of hydrogen sulfide on growth, physiological and biochemical characteristics of eggplant seedlings under salt stress. South African Journal of Botany 2021;143:79-89. [DOI: 10.1016/j.sajb.2021.07.034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
27 Borisov VB, Forte E. Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics. Int J Mol Sci 2021;22:12688. [PMID: 34884491 DOI: 10.3390/ijms222312688] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
28 Li L, Zeng Y, Cheng X, Shen W. The Applications of Molecular Hydrogen in Horticulture. Horticulturae 2021;7:513. [DOI: 10.3390/horticulturae7110513] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
29 Fardus J, Hossain MS, Fujita M. Potential role of L-glutamic acid in mitigating cadmium toxicity in lentil (Lens culinaris Medik.) through modulating the antioxidant defence system and nutrient homeostasis. Not Bot Horti Agrobo 2021;49:12485. [DOI: 10.15835/nbha49412485] [Reference Citation Analysis]
30 Corpas FJ, González-Gordo S, Muñoz-Vargas MA, Rodríguez-Ruiz M, Palma JM. The Modus Operandi of Hydrogen Sulfide(H2S)-Dependent Protein Persulfidation in Higher Plants. Antioxidants (Basel) 2021;10:1686. [PMID: 34829557 DOI: 10.3390/antiox10111686] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
31 Wang P, Fang H, Gao R, Liao W. Protein Persulfidation in Plants: Function and Mechanism. Antioxidants (Basel) 2021;10:1631. [PMID: 34679765 DOI: 10.3390/antiox10101631] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Zheng S, Su M, Wang L, Zhang T, Wang J, Xie H, Wu X, Haq SIU, Qiu QS. Small signaling molecules in plant response to cold stress. J Plant Physiol 2021;266:153534. [PMID: 34601338 DOI: 10.1016/j.jplph.2021.153534] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
33 Jung HI, Lee TG, Lee J, Chae MJ, Lee EJ, Kim MS, Jung GB, Emmanuel A, Jeon S, Lee BR. Foliar-Applied Glutathione Mitigates Cadmium-Induced Oxidative Stress by Modulating Antioxidant-Scavenging, Redox-Regulating, and Hormone-Balancing Systems in Brassica napus. Front Plant Sci 2021;12:700413. [PMID: 34589095 DOI: 10.3389/fpls.2021.700413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
34 Sharafi Y, Jannatizadeh A, Fard JR, Aghdam MS. Melatonin treatment delays senescence and improves antioxidant potential of sweet cherry fruits during cold storage. Scientia Horticulturae 2021;288:110304. [DOI: 10.1016/j.scienta.2021.110304] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
35 Chowdhary AA, Mishra S, Singh V, Srivastava V. Elucidation of sub-cellular H2S metabolism in Solanum lycopersicum L. and its assessment under development and biotic stress.. [DOI: 10.1101/2021.09.25.461755] [Reference Citation Analysis]
36 Kaur H, Hussain SJ, Al-Huqail AA, Siddiqui MH, Al-Huqail AA, Khan MIR. Hydrogen sulphide and salicylic acid regulate antioxidant pathway and nutrient balance in mustard plants under cadmium stress. Plant Biol (Stuttg) 2021. [PMID: 34516728 DOI: 10.1111/plb.13322] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, Lenka D, Chand S, Kumar V, Dey P, Indu, Pandey S, Vachova P, Gupta A, Brestic M, El Sabagh A. Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. Front Plant Sci 2021;12:670369. [PMID: 34484254 DOI: 10.3389/fpls.2021.670369] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 22.0] [Reference Citation Analysis]
38 Wang H, Liu Z, Luo S, Li J, Zhang J, Li L, Xie J. 5-Aminolevulinic acid and hydrogen sulphide alleviate chilling stress in pepper (Capsicum annuum L.) seedlings by enhancing chlorophyll synthesis pathway. Plant Physiol Biochem 2021;167:567-76. [PMID: 34455225 DOI: 10.1016/j.plaphy.2021.08.031] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
39 Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP. Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. Trends Plant Sci 2021;26:1270-85. [PMID: 34417078 DOI: 10.1016/j.tplants.2021.07.016] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 29.0] [Reference Citation Analysis]
40 Siddiqui MH, Khan MN, Mukherjee S, Basahi RA, Alamri S, Al-Amri AA, Alsubaie QD, Ali HM, Al-Munqedhi BMA, Almohisen IAA. Exogenous melatonin-mediated regulation of K+ /Na+ transport, H+ -ATPase activity and enzymatic antioxidative defence operate through endogenous hydrogen sulphide signalling in NaCl-stressed tomato seedling roots. Plant Biol (Stuttg) 2021;23:797-805. [PMID: 34263973 DOI: 10.1111/plb.13296] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
41 Chen S, Wang X, Jia H, Li F, Ma Y, Liesche J, Liao M, Ding X, Liu C, Chen Y, Li N, Li J. Persulfidation-induced structural change in SnRK2.6 establishes intramolecular interaction between phosphorylation and persulfidation. Mol Plant 2021:S1674-2052(21)00268-9. [PMID: 34242849 DOI: 10.1016/j.molp.2021.07.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 19.0] [Reference Citation Analysis]
42 Buet A, Steelheart C, Perini MA, Galatro A, Simontacchi M, Gergoff Grozeff GE. Nitric Oxide as a Key Gasotransmitter in Fruit Postharvest: An Overview. J Plant Growth Regul 2021;40:2286-302. [DOI: 10.1007/s00344-021-10428-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
43 Siddiqui MH, Khan MN, Mukherjee S, Alamri S, Basahi RA, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Almohisen IAA. Hydrogen sulfide (H2S) and potassium (K+) synergistically induce drought stress tolerance through regulation of H+-ATPase activity, sugar metabolism, and antioxidative defense in tomato seedlings. Plant Cell Rep 2021;40:1543-64. [PMID: 34142217 DOI: 10.1007/s00299-021-02731-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
44 Basu S, Kumar G. Exploring the significant contribution of silicon in regulation of cellular redox homeostasis for conferring stress tolerance in plants. Plant Physiol Biochem 2021;166:393-404. [PMID: 34153883 DOI: 10.1016/j.plaphy.2021.06.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
45 Zakharova OV, Gusev AA, Muratov DS, Shuklinov AV, Strekalova NS, Matveev SM. Titanium Trisulfide Nanoribbons Affect the Downy Birch and Poplar × Aspen Hybrid in Plant Tissue Culture via the Emission of Hydrogen Sulfide. Forests 2021;12:713. [DOI: 10.3390/f12060713] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 Zuccarelli R, Rodríguez-Ruiz M, Lopes-Oliveira PJ, Pascoal GB, Andrade SCS, Furlan CM, Purgatto E, Palma JM, Corpas FJ, Rossi M, Freschi L. Multifaceted roles of nitric oxide in tomato fruit ripening: NO-induced metabolic rewiring and consequences for fruit quality traits. J Exp Bot 2021;72:941-58. [PMID: 33165620 DOI: 10.1093/jxb/eraa526] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 22.0] [Reference Citation Analysis]
47 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J Exp Bot 2021;72:830-47. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 22.0] [Reference Citation Analysis]
48 Borisov VB, Forte E. Terminal Oxidase Cytochrome bd Protects Bacteria Against Hydrogen Sulfide Toxicity. Biochemistry (Mosc) 2021;86:22-32. [PMID: 33705279 DOI: 10.1134/S000629792101003X] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
49 Buret AG, Allain T, Motta JP, Wallace JL. Effects of Hydrogen Sulfide on the Microbiome: From Toxicity to Therapy. Antioxid Redox Signal 2021. [PMID: 33691464 DOI: 10.1089/ars.2021.0004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 20.0] [Reference Citation Analysis]
50 Caverzan A, Ebone LA, Chiomento JLT, Chavarria G. Physiological role of hydrogen sulfide in seed germination and seedling development under stress conditions. Archives of Agronomy and Soil Science. [DOI: 10.1080/03650340.2021.1912321] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
51 Aghdam MS, Alikhani-Koupaei M, Khademian R. Delaying Broccoli Floret Yellowing by Phytosulfokine α Application During Cold Storage. Front Nutr 2021;8:609217. [PMID: 33869261 DOI: 10.3389/fnut.2021.609217] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
52 Goyal V, Jhanghel D, Mehrotra S. Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide. Physiologia Plantarum 2021;171:896-908. [DOI: 10.1111/ppl.13380] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 18.0] [Reference Citation Analysis]
53 Ge X, Zhang H, Zhang C, Du M. A Heterogeneous Nanoscale Covalent Organic Framework Fluorescence Probe for Sensitive Detection of Hydrogen Sulfide. ChemNanoMat 2021;7:530-3. [DOI: 10.1002/cnma.202100049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Li Z, Xiang R, Wang J. Hydrogen Sulfide–Phytohormone Interaction in Plants Under Physiological and Stress Conditions. J Plant Growth Regul. [DOI: 10.1007/s00344-021-10350-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
55 Khan MN, Siddiqui MH, Mukherjee S, Alamri S, Al-amri AA, Alsubaie QD, Al-munqedhi BM, Ali HM. Calcium-hydrogen sulfide crosstalk during K+-deficient NaCl stress operates through regulation of Na+/H+ antiport and antioxidative defense system in mung bean roots. Plant Physiology and Biochemistry 2021;159:211-25. [DOI: 10.1016/j.plaphy.2020.11.055] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 29.0] [Reference Citation Analysis]
56 Iqbal N, Umar S, Khan NA, Corpas FJ. Nitric Oxide and Hydrogen Sulfide Coordinately Reduce Glucose Sensitivity and Decrease Oxidative Stress via Ascorbate-Glutathione Cycle in Heat-Stressed Wheat (Triticum aestivum L.) Plants. Antioxidants (Basel) 2021;10:108. [PMID: 33466569 DOI: 10.3390/antiox10010108] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 30.0] [Reference Citation Analysis]
57 Rai P, Singh VP, Peralta-Videa J, Tripathi DK, Sharma S, Corpas FJ. Hydrogen sulfide (H2S) underpins the beneficial silicon effects against the copper oxide nanoparticles (CuO NPs) phytotoxicity in Oryza sativa seedlings. J Hazard Mater 2021;415:124907. [PMID: 34088169 DOI: 10.1016/j.jhazmat.2020.124907] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
58 Oz MT, Eyidogan F. Hydrogen Sulfide: A Road Ahead for Abiotic Stress Tolerance in Plants. Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses 2021. [DOI: 10.1007/978-3-030-73678-1_2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Karpets YV, Kolupaev YE, Shkliarevskyi MA. Functional Interaction of Hydrogen Sulfide with Nitric Oxide, Calcium, and Reactive Oxygen Species Under Abiotic Stress in Plants. Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses 2021. [DOI: 10.1007/978-3-030-73678-1_3] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
60 Corpas FJ, González-gordo S, Palma JM. Hydrogen Sulfide and Fruit Ripening. Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses 2021. [DOI: 10.1007/978-3-030-73678-1_7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Siddiqui ZH, Abbas ZK, Ansari MW, Khan MN. Hydrogen Sulfide on the Crossroad of Regulation, Protection, Interaction and Signaling in Plant Systems Under Different Environmental Conditions. Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses 2021. [DOI: 10.1007/978-3-030-73678-1_1] [Reference Citation Analysis]
62 González-morales S, López-sánchez RC, Juárez-maldonado A, Robledo-olivo A, Benavides-mendoza A. A Transcriptomic and Proteomic View of Hydrogen Sulfide Signaling in Plant Abiotic Stress. Hydrogen Sulfide and Plant Acclimation to Abiotic Stresses 2021. [DOI: 10.1007/978-3-030-73678-1_10] [Reference Citation Analysis]
63 Patel M, Parida AK. Role of hydrogen sulfide in alleviating oxidative stress in plants through induction of antioxidative defense mechanism, and modulations of physiological and biochemical components. Hydrogen Sulfide in Plant Biology 2021. [DOI: 10.1016/b978-0-323-85862-5.00006-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Борисов В, Форте Е. Терминальная оксидаза цитохром bd защищает бактерии от токсического воздействия сероводорода. БМ 2021;86:30-42. [DOI: 10.31857/s0320972521010036] [Reference Citation Analysis]
65 Ahmed M, Fahad S, Ali MA, Hussain S, Tariq M, Ilyas F, Ahmad S, Saud S, Hammad HM, Nasim W, Wu C, Liu H. Hydrogen Sulfide: A Novel Gaseous Molecule for Plant Adaptation to Stress. J Plant Growth Regul. [DOI: 10.1007/s00344-020-10284-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
66 Choudhary KK, Chaudhary N. Hydrogen sulfide and reactive oxygen species crosstalk and acquisition of abiotic stress tolerance. Hydrogen Sulfide in Plant Biology 2021. [DOI: 10.1016/b978-0-323-85862-5.00016-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Gupta SK, Marwa N, Pandey AK, Zhang Y, Zhang J. Hydrogen sulfide homeostasis in plants: An overview. Hydrogen Sulfide in Plant Biology 2021. [DOI: 10.1016/b978-0-323-85862-5.00017-8] [Reference Citation Analysis]
68 Vojtovič D, Luhová L, Petřivalský M. Something smells bad to plant pathogens: Production of hydrogen sulfide in plants and its role in plant defence responses. J Adv Res 2021;27:199-209. [PMID: 33318878 DOI: 10.1016/j.jare.2020.09.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
69 Kharbech O, Sakouhi L, Ben Massoud M, Jose Mur LA, Corpas FJ, Djebali W, Chaoui A. Nitric oxide and hydrogen sulfide protect plasma membrane integrity and mitigate chromium-induced methylglyoxal toxicity in maize seedlings. Plant Physiology and Biochemistry 2020;157:244-55. [DOI: 10.1016/j.plaphy.2020.10.017] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 16.0] [Reference Citation Analysis]
70 Mukherjee S, Bhatla SC. Exogenous Melatonin Modulates Endogenous H2S Homeostasis and L-Cysteine Desulfhydrase Activity in Salt-Stressed Tomato (Solanum lycopersicum L. var. cherry) Seedling Cotyledons. J Plant Growth Regul. [DOI: 10.1007/s00344-020-10261-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
71 Ocvirk D, Špoljarević M, Kristić M, Hancock JT, Teklić T, Lisjak M. The effects of seed priming with sodium hydrosulphide on drought tolerance of sunflower ( Helianthus annuus L.) in germination and early growth. Ann Appl Biol 2021;178:400-13. [DOI: 10.1111/aab.12658] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
72 Khan MN, Siddiqui MH, Alsolami MA, Alamri S, Hu Y, Ali HM, Al-amri AA, Alsubaie QD, Al-munqedhi BM, Al-ghamdi A. Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. Plant Physiology and Biochemistry 2020;156:278-90. [DOI: 10.1016/j.plaphy.2020.09.017] [Cited by in Crossref: 43] [Cited by in F6Publishing: 29] [Article Influence: 21.5] [Reference Citation Analysis]
73 Luo S, Tang Z, Yu J, Liao W, Xie J, Lv J, Feng Z, Dawuda MM. Hydrogen sulfide negatively regulates cd-induced cell death in cucumber (Cucumis sativus L) root tip cells. BMC Plant Biol 2020;20:480. [PMID: 33087071 DOI: 10.1186/s12870-020-02687-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
74 Alamri S, Ali HM, Khan MIR, Singh VP, Siddiqui MH. Exogenous nitric oxide requires endogenous hydrogen sulfide to induce the resilience through sulfur assimilation in tomato seedlings under hexavalent chromium toxicity. Plant Physiology and Biochemistry 2020;155:20-34. [DOI: 10.1016/j.plaphy.2020.07.003] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 18.0] [Reference Citation Analysis]
75 González-gordo S, Palma JM, Corpas FJ. Appraisal of H2S metabolism in Arabidopsis thaliana: In silico analysis at the subcellular level. Plant Physiology and Biochemistry 2020;155:579-88. [DOI: 10.1016/j.plaphy.2020.08.014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
76 Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. Front Plant Sci 2020;11:571288. [PMID: 33072147 DOI: 10.3389/fpls.2020.571288] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
77 Li LH, Yi HL, Xiu-Ping Liu, Qi HX. Sulfur dioxide enhance drought tolerance of wheat seedlings through H2S signaling. Ecotoxicol Environ Saf 2021;207:111248. [PMID: 32927156 DOI: 10.1016/j.ecoenv.2020.111248] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
78 Li G, Shah AA, Khan WU, Yasin NA, Ahmad A, Abbas M, Ali A, Safdar N. Hydrogen sulfide mitigates cadmium induced toxicity in Brassica rapa by modulating physiochemical attributes, osmolyte metabolism and antioxidative machinery. Chemosphere 2021;263:127999. [PMID: 33297036 DOI: 10.1016/j.chemosphere.2020.127999] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 16.0] [Reference Citation Analysis]
79 Zulfiqar F, Hancock JT. Hydrogen sulfide in horticulture: Emerging roles in the era of climate change. Plant Physiol Biochem 2020;155:667-75. [PMID: 32861033 DOI: 10.1016/j.plaphy.2020.08.010] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
80 Wang HR, Che YH, Wang ZH, Zhang BN, Huang D, Feng F, Ao H. The multiple effects of hydrogen sulfide on cadmium toxicity in tobacco may be interacted with CaM signal transduction. J Hazard Mater 2021;403:123651. [PMID: 32818834 DOI: 10.1016/j.jhazmat.2020.123651] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
81 Kaya C, Murillo-Amador B, Ashraf M. Involvement of L-Cysteine Desulfhydrase and Hydrogen Sulfide in Glutathione-Induced Tolerance to Salinity by Accelerating Ascorbate-Glutathione Cycle and Glyoxalase System in Capsicum. Antioxidants (Basel) 2020;9:E603. [PMID: 32664227 DOI: 10.3390/antiox9070603] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]