BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kappaun K, Piovesan AR, Carlini CR, Ligabue-Braun R. Ureases: Historical aspects, catalytic, and non-catalytic properties - A review. J Adv Res 2018;13:3-17. [PMID: 30094078 DOI: 10.1016/j.jare.2018.05.010] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 15.6] [Reference Citation Analysis]
Number Citing Articles
1 Deng R, Zhan X. High performance self-assembled nano-chlorapatite in the presence of lactonic sophorolipid for the immobilization of cadmium in polluted sediment. J Hazard Mater 2023;445:130484. [PMID: 36455326 DOI: 10.1016/j.jhazmat.2022.130484] [Reference Citation Analysis]
2 Macegoniuk K, Tabor W, Mazzei L, Cianci M, Giurg M, Olech K, Burda-Grabowska M, Kaleta R, Grabowiecka A, Mucha A, Ciurli S, Berlicki Ł. Optimized Ebselen-Based Inhibitors of Bacterial Ureases with Nontypical Mode of Action. J Med Chem 2023. [PMID: 36661843 DOI: 10.1021/acs.jmedchem.2c01799] [Reference Citation Analysis]
3 Liang H, Peng F, Tu Y. Active therapy based on the byproducts of micro/nanomotors. Nanoscale 2023;15:953-62. [PMID: 36537366 DOI: 10.1039/d2nr05818a] [Reference Citation Analysis]
4 Maślanka M, Mucha A. Antibacterial Activity of Ebselen. Int J Mol Sci 2023;24. [PMID: 36675123 DOI: 10.3390/ijms24021610] [Reference Citation Analysis]
5 Barreto YC, Oliveira RS, Borges BT, Rosa ME, Zanatta AP, de Almeida CGM, Vinadé L, Carlini CR, Belo CAD. The neurotoxic mechanism of Jack Bean Urease in insects involves the interplay between octopaminergic and dopaminergic pathways. Pestic Biochem Physiol 2023;189:105290. [PMID: 36549826 DOI: 10.1016/j.pestbp.2022.105290] [Reference Citation Analysis]
6 Moro CF, Nogueira FCS, Almeida CGM, Real-guerra R, Dalberto PF, Bizarro CV, Ligabue-braun R, Carlini CR. One enzyme, many faces: urease is also canatoxin. Journal of Biomolecular Structure and Dynamics 2022. [DOI: 10.1080/07391102.2022.2158938] [Reference Citation Analysis]
7 Pawar VS, Bhande D, Pawar SD, Mudila H, Kaushik A, Kumar A. Investigating purification and activity analysis of urease enzyme extracted from jack bean source: A green chemistry approach. Anal Biochem 2022;659:114925. [PMID: 36181866 DOI: 10.1016/j.ab.2022.114925] [Reference Citation Analysis]
8 Sauters TJC, Roth C, Murray D, Sun S, Floyd-averette A, Onyishi CU, May RC, Heitman J, Magwene P. Amoeba Predation ofCryptococcus: A Quantitative and Population Genomic Evaluation of the Accidental Pathogen Hypothesis.. [DOI: 10.1101/2022.12.08.519367] [Reference Citation Analysis]
9 Wang Q, Wang Z, He Y, Xiong B, Li Y, Wang F. Chemical and structural modification of RNA-cleaving DNAzymes for efficient biosensing and biomedical applications. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116910] [Reference Citation Analysis]
10 Ghenaiet K, Boutefnouchet A, Lekouaghet A, Boutefnouchet Abassi N, Tichati L. Evaluation of the Antilithiasic activity, Phospho-ammoniaco-magnésien of the aqueous extract of Fraxinus excelsior (L.). AJRC 2022. [DOI: 10.52711/0974-4150.2022.00080] [Reference Citation Analysis]
11 Bhupenchandra I, Basumatary A, Choudhary AK, Kumar A, Sarkar D, Chongtham SK, Singh AH, Devi EL, Bora SS, Salam MD, Sahoo MR, Gudade BA, Kumar A, Devi SH, Gogoi B, Harish MN, Gupta G, Olivia LC, Devi YP, Sarika K, Thapa S, Rajawat MVS. Elucidating the impact of boron fertilization on soil physico-chemical and biological entities under cauliflower-cowpea-okra cropping system in an Eastern Himalayan acidic Inceptisol. Front Microbiol 2022;13. [DOI: 10.3389/fmicb.2022.996220] [Reference Citation Analysis]
12 Chang Y, Park TE, Lee SW, Lee EH. Colorimetric Detection of Urease-Producing Microbes Using an Ammonia-Responsive Flexible Film Sensor. Biosensors (Basel) 2022;12:886. [PMID: 36291023 DOI: 10.3390/bios12100886] [Reference Citation Analysis]
13 Ren H, Deng Y, Ma L, Wei Z, Ma L, Yang D, Wang B, Luo ZY. Enhanced biodegradation of oil-contaminated soil oil in shale gas exploitation by biochar immobilization. Biodegradation 2022. [PMID: 36214905 DOI: 10.1007/s10532-022-09999-6] [Reference Citation Analysis]
14 Ghodrati A, Moradkhani F, Asadi M, Mahernia S, Nazari Montazer M, Biglar M, Amanlou M. Cyanuric Chloride Mediated One-Pot Three-Component Reaction of Benzoylhydrazinyl-N-Alkyl Acetamide Derivatives as a New Urease Inhibitor Scaffold: Docking Study and Enzyme Inhibitory Activity. Pharm Chem J 2022;56:935-942. [DOI: 10.1007/s11094-022-02729-5] [Reference Citation Analysis]
15 Hommel J, Gehring L, Weinhardt F, Ruf M, Steeb H. Effects of Enzymatically Induced Carbonate Precipitation on Capillary Pressure–Saturation Relations. Minerals 2022;12:1186. [DOI: 10.3390/min12101186] [Reference Citation Analysis]
16 Lapierre FM, Bolz I, Büchs J, Huber R. Developing a fluorometric urease activity microplate assay suitable for automated microbioreactor experiments. Front Bioeng Biotechnol 2022;10:936759. [DOI: 10.3389/fbioe.2022.936759] [Reference Citation Analysis]
17 Gulesci N, Yucebilgic G, Yildirim D. Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease. Turkish Journal of Biochemistry 2022;47:501-509. [DOI: 10.1515/tjb-2021-0264] [Reference Citation Analysis]
18 Li Y, Chen J, Han T, Li W, Liu K. Soil enzymatic activities response to long-term fertilization during key growth stages of early rice. Archives of Agronomy and Soil Science 2022;68:1443-1456. [DOI: 10.1080/03650340.2021.1898595] [Reference Citation Analysis]
19 Aniceto N, Bonifácio VDB, Guedes RC, Martinho N. Exploring the Chemical Space of Urease Inhibitors to Extract Meaningful Trends and Drivers of Activity. J Chem Inf Model 2022;62:3535-50. [PMID: 35666858 DOI: 10.1021/acs.jcim.2c00150] [Reference Citation Analysis]
20 Bouaicha O, Mimmo T, Tiziani R, Praeg N, Polidori C, Lucini L, Vigani G, Terzano R, Sanchez-hernandez JC, Illmer P, Cesco S, Borruso L. Microplastics make their way into the soil and rhizosphere: A review of the ecological consequences. Rhizosphere 2022;22:100542. [DOI: 10.1016/j.rhisph.2022.100542] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Abramov EG, Antropova NS. The effect of the antibiotic tetracycline hydrochloride on the biotransformation of urea when exposed to soil nitrifying strains. Hygiene and sanitation 2022;101:589-595. [DOI: 10.47470/0016-9900-2022-101-5-589-595] [Reference Citation Analysis]
22 Lu Q, Zhang Z, Xu Y, Chen Y, Li C. Sanguinarine, a major alkaloid from Zanthoxylum nitidum (Roxb.) DC., inhibits urease of Helicobacter pylori and jack bean: Susceptibility and mechanism. J Ethnopharmacol 2022;:115388. [PMID: 35577159 DOI: 10.1016/j.jep.2022.115388] [Reference Citation Analysis]
23 Loharch S, Berlicki Ł. Rational Development of Bacterial Ureases Inhibitors. Chem Rec 2022;:e202200026. [PMID: 35502852 DOI: 10.1002/tcr.202200026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Valles M, Pujals S, Albertazzi L, Sánchez S. Enzyme Purification Improves the Enzyme Loading, Self-Propulsion, and Endurance Performance of Micromotors. ACS Nano 2022. [PMID: 35341250 DOI: 10.1021/acsnano.1c10520] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Yang W, Feng Q, Peng Z, Wang G. An overview on the synthetic urease inhibitors with structure-activity relationship and molecular docking. Eur J Med Chem 2022;234:114273. [PMID: 35305460 DOI: 10.1016/j.ejmech.2022.114273] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Yaqoob S, Hameed A, Ahmed M, Imran M, Qadir MA, Ramzan M, Yousaf N, Iqbal J, Muddassar M. Antiurease screening of alkyl chain-linked thiourea derivatives: in vitro biological activities, molecular docking, and dynamic simulations studies. RSC Adv 2022;12:6292-302. [PMID: 35424581 DOI: 10.1039/d1ra08694d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Demirci S, Sahiner N. Urease-Immobilized PEI Cryogels for the Enzymatic Hydrolysis of Urea and Carbon Dioxide Uptake. Ind Eng Chem Res . [DOI: 10.1021/acs.iecr.1c05087] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
28 Wang L, Cheng W, Xue Z. The Effect of Calcium Source on Pb and Cu Remediation Using Enzyme-Induced Carbonate Precipitation. Front Bioeng Biotechnol 2022;10:849631. [DOI: 10.3389/fbioe.2022.849631] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
29 Abramov EG, Malysheva AG. Biotransformation of urea in the water of water bodies. Hygiene and sanitation 2022;101:21-29. [DOI: 10.47470/0016-9900-2022-101-1-21-29] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Alptekin Ö. Characteristics of immobilized urease onto modified zirconium (IV) oxide via glutaraldehyde: kinetic, stability, and operational stabilities in bioreactors. Chem Pap 2022;76:749-761. [DOI: 10.1007/s11696-021-01891-6] [Reference Citation Analysis]
31 Çapan İ. Methimazole Analogs as Urease Inhibitors: Synthesis, In Silico and In Vitro Evaluation. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202104076] [Reference Citation Analysis]
32 Asadi M, Iraji A, Sherafati M, Nazari Montazer M, Ansari S, Mohammadi Khanaposhtani M, Tanideh N, Dianatpour M, Biglar M, Larijani B, Foroumadi A, Azizian H, Amanlou M, Mahdavi M. Synthesis and in vitro urease inhibitory activity of 5-nitrofuran-2-yl-thiadiazole linked to different cyclohexyl-2-(phenylamino)acetamides, in silico and kinetic studies. Bioorganic Chemistry 2022. [DOI: 10.1016/j.bioorg.2021.105592] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
33 Kastori R, Putnik-delić M, Maksimović I. Functions of nickel in higher plants: A review. Acta agriculturae Serbica 2022;27:89-101. [DOI: 10.5937/aaser2253089k] [Reference Citation Analysis]
34 Lu Q, Tan D, Xu Y, Liu M, He Y, Li C. Inactivation of Jack Bean Urease by Nitidine Chloride from Zanthoxylum nitidum: Elucidation of Inhibitory Efficacy, Kinetics and Mechanism. J Agric Food Chem 2021;69:13772-9. [PMID: 34767340 DOI: 10.1021/acs.jafc.1c04801] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
35 Hailemariam S, Zhao S, He Y, Wang J. Urea transport and hydrolysis in the rumen: A review. Anim Nutr 2021;7:989-96. [PMID: 34738029 DOI: 10.1016/j.aninu.2021.07.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
36 Broll V, Perin APA, Lopes FC, Martinelli AHS, Moyetta NR, Fruttero LL, Grahl MV, Uberti AF, Demartini DR, Ligabue-braun R, Carlini CR. Non-enzymatic properties of Proteus mirabilis urease subunits. Process Biochemistry 2021;110:263-274. [DOI: 10.1016/j.procbio.2021.08.023] [Reference Citation Analysis]
37 Testa A, Dindo M, Rebane AA, Nasouri B, Style RW, Golestanian R, Dufresne ER, Laurino P. Sustained enzymatic activity and flow in crowded protein droplets. Nat Commun 2021;12:6293. [PMID: 34725341 DOI: 10.1038/s41467-021-26532-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
38 Iqbal J, Jacob C, Sévigny J. Editorial: Metalloenzymes: Potential Drug Targets. Front Pharmacol 2021;12:746925. [PMID: 34630115 DOI: 10.3389/fphar.2021.746925] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Hamad A, Khan MA, Ahmad I, Khalil R, Khalid M, Abbas U, Azhar R, Uddin J, Batiha GE, Khan A, Shafiq Z, Al-Harrasi A. Bio-oriented synthesis of new sulphadiazine derivatives for urease inhibition and their pharmacokinetic analysis. Sci Rep 2021;11:18973. [PMID: 34556784 DOI: 10.1038/s41598-021-98413-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Yang W, Li J, Yang X. Features and Applications of Urine Stabilization Methods: A Review. Front Sustain 2021;2. [DOI: 10.3389/frsus.2021.710739] [Reference Citation Analysis]
41 Skorupka M, Nosalewicz A. Ammonia Volatilization from Fertilizer Urea—A New Challenge for Agriculture and Industry in View of Growing Global Demand for Food and Energy Crops. Agriculture 2021;11:822. [DOI: 10.3390/agriculture11090822] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
42 Matczuk D, Siczek A. Effectiveness of the use of urease inhibitors in agriculture: a review. Int Agrophys 2021;35:197-208. [DOI: 10.31545/intagr/139714] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
43 Tavares MC, Oliveira KA, de Fátima Â, Coltro WKT, Santos JCC. Paper-based analytical device with colorimetric detection for urease activity determination in soils and evaluation of potential inhibitors. Talanta 2021;230:122301. [PMID: 33934769 DOI: 10.1016/j.talanta.2021.122301] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
44 McConnell EM, Cozma I, Mou Q, Brennan JD, Lu Y, Li Y. Biosensing with DNAzymes. Chem Soc Rev 2021;50:8954-94. [PMID: 34227631 DOI: 10.1039/d1cs00240f] [Cited by in Crossref: 46] [Cited by in F6Publishing: 56] [Article Influence: 23.0] [Reference Citation Analysis]
45 Grahl MVC, Uberti AF, Broll V, Bacaicoa-Caruso P, Meirelles EF, Carlini CR. Proteus mirabilis Urease: Unsuspected Non-Enzymatic Properties Relevant to Pathogenicity. Int J Mol Sci 2021;22:7205. [PMID: 34281258 DOI: 10.3390/ijms22137205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Hernández VM, Arteaga A, Dunn MF. Diversity, properties and functions of bacterial arginases. FEMS Microbiol Rev 2021:fuab034. [PMID: 34160574 DOI: 10.1093/femsre/fuab034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
47 Testa A, Dindo M, Rebane AA, Nasouri B, Style RW, Golestanian R, Dufresne ER, Laurino P. Sustained Enzymatic Activity and Flow in Crowded Protein Droplets.. [DOI: 10.1101/2021.05.16.444336] [Reference Citation Analysis]
48 Guerrero-Alburquerque N, Zhao S, Rentsch D, Koebel MM, Lattuada M, Malfait WJ. Ureido Functionalization through Amine-Urea Transamidation under Mild Reaction Conditions. Polymers (Basel) 2021;13:1583. [PMID: 34069157 DOI: 10.3390/polym13101583] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Panja S, Adams DJ. Urea-Urease Reaction in Controlling Properties of Supramolecular Hydrogels: Pros and Cons. Chemistry 2021;27:8928-39. [PMID: 33861488 DOI: 10.1002/chem.202100490] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
50 Levine M. Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Front Chem 2021;9:616815. [PMID: 33937184 DOI: 10.3389/fchem.2021.616815] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
51 Konstantinou C, Wang Y, Biscontin G, Soga K. The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of bio-treated coarse sand specimens. Sci Rep 2021;11:6161. [PMID: 33731790 DOI: 10.1038/s41598-021-85712-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
52 von Wolff L, Weinhardt F, Class H, Hommel J, Rohde C. Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transp Porous Med 2021;137:327-43. [DOI: 10.1007/s11242-021-01560-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Ahenkorah I, Rahman MM, Karim MR, Beecham S, Saint C. A Review of Enzyme Induced Carbonate Precipitation (EICP): The Role of Enzyme Kinetics. Sustainable Chemistry 2021;2:92-114. [DOI: 10.3390/suschem2010007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
54 Almeida CGM, Costa-Higuchi K, Piovesan AR, Moro CF, Venturin GT, Greggio S, Costa-Ferro ZS, Salamoni SD, Peigneur S, Tytgat J, de Lima ME, Silva CND, Vinadé L, Rowan EG, DaCosta JC, Dal Belo CA, Carlini CR. Neurotoxic and convulsant effects induced by jack bean ureases on the mammalian nervous system. Toxicology 2021;454:152737. [PMID: 33631299 DOI: 10.1016/j.tox.2021.152737] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Milo S, Heylen RA, Glancy J, Williams GT, Patenall BL, Hathaway HJ, Thet NT, Allinson SL, Laabei M, Jenkins ATA. A small-molecular inhibitor against Proteus mirabilis urease to treat catheter-associated urinary tract infections. Sci Rep 2021;11:3726. [PMID: 33580163 DOI: 10.1038/s41598-021-83257-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
56 卓 越. Properties and Application of <i>Helicobacter pylori</i> Urease. PI 2021;10:138-141. [DOI: 10.12677/pi.2021.103018] [Reference Citation Analysis]
57 Kumar A, Bera S. Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports 2020;12:100584. [DOI: 10.1016/j.biteb.2020.100584] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
58 Khodadadi Tirkolaei H, Javadi N, Krishnan V, Hamdan N, Kavazanjian E. Crude Urease Extract for Biocementation. J Mater Civ Eng 2020;32:04020374. [DOI: 10.1061/(asce)mt.1943-5533.0003466] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
59 Grahl MVC, Lopes FC, Martinelli AHS, Carlini CR, Fruttero LL. Structure-Function Insights of Jaburetox and Soyuretox: Novel Intrinsically Disordered Polypeptides Derived from Plant Ureases. Molecules 2020;25:E5338. [PMID: 33207637 DOI: 10.3390/molecules25225338] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
60 Righetto RD, Anton L, Adaixo R, Jakob RP, Zivanov J, Mahi MA, Ringler P, Schwede T, Maier T, Stahlberg H. High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica. Nat Commun 2020;11:5101. [PMID: 33037208 DOI: 10.1038/s41467-020-18870-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
61 Ugheighele SE, Imafidon KE, Choudhary MI, Shakil A, Khan M, Sherwani ZA, Ul-haq Z. Anti-urease and cytotoxic activity of 1-Nitro-2-phenylethane and Nerolidol; two major compounds isolated from the seeds of Dennettia tripetala. Med Chem Res 2020;29:1874-1881. [DOI: 10.1007/s00044-020-02607-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
62 Moyetta NR, Fruttero LL, Leyria J, Ramos FO, Carlini CR, Canavoso L. The entomotoxin Jack Bean Urease changes cathepsin D activity in nymphs of the hematophagous insect Dipetalogaster maxima (Hemiptera: Reduviidae). Comp Biochem Physiol B Biochem Mol Biol 2021;251:110511. [PMID: 33007467 DOI: 10.1016/j.cbpb.2020.110511] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
63 Barreto YC, Rosa ME, Zanatta AP, Borges BT, Hyslop S, Vinadé LH, Dal Belo CA. Entomotoxicity of jaburetox: revisiting the neurotoxic mechanisms in insects. J Venom Res 2020;10:38-44. [PMID: 33209252] [Reference Citation Analysis]
64 Hamad A, Khan MA, Rahman KM, Ahmad I, Ul-haq Z, Khan S, Shafiq Z. Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorganic Chemistry 2020;102:104057. [DOI: 10.1016/j.bioorg.2020.104057] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
65 de Oliveira BFR, Carr CM, Dobson ADW, Laport MS. Harnessing the sponge microbiome for industrial biocatalysts. Appl Microbiol Biotechnol 2020;104:8131-54. [PMID: 32827049 DOI: 10.1007/s00253-020-10817-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
66 Ip YK, Teng GCY, Boo MV, Poo JST, Hiong KC, Kim H, Wong WP, Chew SF. Symbiodiniaceae Dinoflagellates Express Urease in Three Subcellular Compartments and Upregulate its Expression Levels in situ in Three Organs of a Giant Clam (Tridacna squamosa) During Illumination. J Phycol 2020;56:1696-711. [PMID: 32725784 DOI: 10.1111/jpy.13053] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
67 Illeová V, Šefčík J, Polakovič M. Thermal inactivation of jack bean urease. Int J Biol Macromol 2020;151:1084-90. [PMID: 31739065 DOI: 10.1016/j.ijbiomac.2019.10.150] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
68 Dalby FR, Svane S, Sigurdarson JJ, Sørensen MK, Hansen MJ, Karring H, Feilberg A. Synergistic Tannic Acid-Fluoride Inhibition of Ammonia Emissions and Simultaneous Reduction of Methane and Odor Emissions from Livestock Waste. Environ Sci Technol 2020;54:7639-50. [DOI: 10.1021/acs.est.0c01231] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
69 Khan W, Abbasi MA, Rehman A, Siddiqui SZ, Nazir M, Ali Shah SA, Raza H, Hassan M, Shahid M, Seo SY. Convergent synthesis, free radical scavenging, Lineweaver‐Burk plot exploration, hemolysis and in silico study of novel indole‐phenyltriazole hybrid bearing acetamides as potent urease inhibitors. J Heterocyclic Chem 2020;57:2955-68. [DOI: 10.1002/jhet.4006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
70 Jamwal S, Ranote S, Dautoo U, Chauhan GS. Improving activity and stabilization of urease by crosslinking to nanoaggregate forms for herbicide degradation. Int J Biol Macromol 2020;158:521-9. [PMID: 32360462 DOI: 10.1016/j.ijbiomac.2020.04.224] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
71 Ding Y, Jin Y, He K, Yi Z, Tan L, Liu L, Tang M, Du A, Fang Y, Zhao H. Low Nitrogen Fertilization Alter Rhizosphere Microorganism Community and Improve Sweetpotato Yield in a Nitrogen-Deficient Rocky Soil. Front Microbiol 2020;11:678. [PMID: 32351491 DOI: 10.3389/fmicb.2020.00678] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
72 Nathan VK, Vijayan J, Parvathi A. Optimization of urease production by Bacillus halodurans PO15: a mangrove bacterium from Poovar mangroves, India. Mar Life Sci Technol 2020;2:194-202. [DOI: 10.1007/s42995-020-00031-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
73 Nieckarz M, Kaczor P, Jaworska K, Raczkowska A, Brzostek K. Urease Expression in Pathogenic Yersinia enterocolitica Strains of Bio-Serotypes 2/O:9 and 1B/O:8 Is Differentially Regulated by the OmpR Regulator. Front Microbiol 2020;11:607. [PMID: 32322248 DOI: 10.3389/fmicb.2020.00607] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
74 Monteiro Pereira Junior E, Maria Silva Guedes Lobato E, Martineli Lima B, Rodrigues Quadros B, Klynger da Silva Lobato A, Pereira Andrade I, de Abreu Faria L. Advancement of Nitrogen Fertilization on Tropical Environmental. Nitrogen Fixation 2020. [DOI: 10.5772/intechopen.90699] [Reference Citation Analysis]
75 Nicolosi D, Genovese C, Cutuli MA, D'Angeli F, Pietrangelo L, Davinelli S, Petronio Petronio G, Di Marco R. Preliminary in Vitro Studies on Corynebacterium urealyticum Pathogenetic Mechanisms, a Possible Candidate for Chronic Idiopathic Prostatitis? Microorganisms 2020;8:E463. [PMID: 32218312 DOI: 10.3390/microorganisms8040463] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
76 Kataria R, Khatkar A. Lead Molecules for Targeted Urease Inhibition: An Updated Review from 2010 -2018. Curr Protein Pept Sci 2019;20:1158-88. [PMID: 30894105 DOI: 10.2174/1389203720666190320170215] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
77 Alfano M, Cavazza C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci 2020;29:1071-89. [PMID: 32022353 DOI: 10.1002/pro.3836] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 15.7] [Reference Citation Analysis]
78 Dhayabaran V, Chidambaram D, Krishnaswamy PR. Identification of compounds for improved growth of Leptospira in culture and isolation. Diagnostic Microbiology and Infectious Disease 2020;96:114923. [DOI: 10.1016/j.diagmicrobio.2019.114923] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
79 Deutch CE. Inhibition of urease activity in the urinary tract pathogens Staphylococcus saprophyticus and Proteus mirabilis by dimethylsulfoxide (DMSO). J Appl Microbiol 2020;128:1514-23. [PMID: 31860153 DOI: 10.1111/jam.14560] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
80 Duarte-Nass C, Rebolledo K, Valenzuela T, Kopp M, Jeison D, Rivas M, Azócar L, Torres-Aravena Á, Ciudad G. Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application. J Environ Manage 2020;256:109938. [PMID: 31989976 DOI: 10.1016/j.jenvman.2019.109938] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 6.8] [Reference Citation Analysis]
81 Kappaun K, Martinelli AHS, Broll V, Zambelli B, Lopes FC, Ligabue-Braun R, Fruttero LL, Moyetta NR, Bonan CD, Carlini CR, Ciurli S. Soyuretox, an Intrinsically Disordered Polypeptide Derived from Soybean (Glycine Max) Ubiquitous Urease with Potential Use as a Biopesticide. Int J Mol Sci 2019;20:E5401. [PMID: 31671552 DOI: 10.3390/ijms20215401] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
82 Houghton CA. Sulforaphane: Its "Coming of Age" as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. Oxid Med Cell Longev 2019;2019:2716870. [PMID: 31737167 DOI: 10.1155/2019/2716870] [Cited by in Crossref: 76] [Cited by in F6Publishing: 80] [Article Influence: 19.0] [Reference Citation Analysis]
83 Šudomová M, Hassan STS, Khan H, Rasekhian M, Nabavi SM. A Multi-Biochemical and In Silico Study on Anti-Enzymatic Actions of Pyroglutamic Acid against PDE-5, ACE, and Urease Using Various Analytical Techniques: Unexplored Pharmacological Properties and Cytotoxicity Evaluation. Biomolecules 2019;9:E392. [PMID: 31438631 DOI: 10.3390/biom9090392] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
84 Nim YS, Wong K. The Maturation Pathway of Nickel Urease. Inorganics 2019;7:85. [DOI: 10.3390/inorganics7070085] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
85 Khan YM, Munir H, Anwar Z. Optimization of process variables for enhanced production of urease by indigenous Aspergillus niger strains through response surface methodology. Biocatalysis and Agricultural Biotechnology 2019;20:101202. [DOI: 10.1016/j.bcab.2019.101202] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
86 Zhang Y, Hess H. Enhanced Diffusion of Catalytically Active Enzymes. ACS Cent Sci 2019;5:939-48. [PMID: 31263753 DOI: 10.1021/acscentsci.9b00228] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]
87 Bracco LF, Levin GJ, Urtasun N, Navarro del Cañizo AA, Wolman FJ, Miranda MV, Cascone O. Covalent immobilization of soybean seed hull urease on chitosan mini-spheres and the impact on their properties. Biocatalysis and Agricultural Biotechnology 2019;18:101093. [DOI: 10.1016/j.bcab.2019.101093] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
88 Matiz A, Mioto PT, Mercier H. Urea in Plants: Metabolic Aspects and Ecological Implications. Progress in Botany 2019. [DOI: 10.1007/124_2019_29] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
89 Adhikari KP, Saggar S, Hanly JA, Guinto DF. Comparing the effectiveness and longevity of the urease inhibitor N-(2-nitrophenyl) phosphoric triamide (2-NPT) with N-(n-butyl) thiophosphoric triamide (nBTPT) in reducing ammonia emissions from cattle urine applied to dairy-grazed pasture soils. Soil Res 2019;57:719. [DOI: 10.1071/sr18337] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
90 Braga TC, Silva TF, Maciel TMS, da Silva ECD, da Silva-júnior EF, Modolo LV, Figueiredo IM, Santos JCC, de Aquino TM, de Fátima Â. Ionic liquid-assisted synthesis of dihydropyrimidin(thi)one Biginelli adducts and investigation of their mechanism of urease inhibition. New J Chem 2019;43:15187-200. [DOI: 10.1039/c9nj03556g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
91 Rechenmacher C, Wiebke-strohm B, Oliveira-busatto LAD, Weber RLM, Corso MCM, Lopes-caitar VS, Silva SMH, Dias WP, Marcelino-guimarães FC, Carlini CR, Bodanese-zanettini MH. Endogenous soybean peptide overexpression: an alternative to protect plants against root-knot nematodes. Biotechnology Research and Innovation 2019;3:10-18. [DOI: 10.1016/j.biori.2019.12.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
92 [DOI: 10.1101/2020.04.28.065599] [Cited by in Crossref: 1] [Reference Citation Analysis]