BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Na KS, Cho SE, Cho SJ. Machine learning-based discrimination of panic disorder from other anxiety disorders. J Affect Disord 2021;278:1-4. [PMID: 32942220 DOI: 10.1016/j.jad.2020.09.027] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Montero Quispe KG, Utyiama DMS, dos Santos EM, Oliveira HABF, Souto EJP. Applying Self-Supervised Representation Learning for Emotion Recognition Using Physiological Signals. Sensors 2022;22:9102. [DOI: 10.3390/s22239102] [Reference Citation Analysis]
2 Jang EH, Choi KW, Kim AY, Yu HY, Jeon HJ, Byun S. Automated detection of panic disorder based on multimodal physiological signals using machine learning. ETRI Journal. [DOI: 10.4218/etrij.2021-0299] [Reference Citation Analysis]
3 Lin W, Gan W, Feng P, Zhong L, Yao Z, Chen P, He W, Yu N. Online prediction model for primary aldosteronism in patients with hypertension in Chinese population: A two-center retrospective study. Front Endocrinol 2022;13:882148. [DOI: 10.3389/fendo.2022.882148] [Reference Citation Analysis]
4 Alvarenga MAS, Bandeira PFR, Guilhermino CS, de Azevedo TG, Olímpio KF, Kersul C, da Cunha GL, Alves-teodoro J, Ribeiro PCC, Mansur-alves M, Teodoro MLM. Network analysis applied to DASS-21: Emergence of a new dimension.. [DOI: 10.1101/2022.07.29.22274386] [Reference Citation Analysis]
5 Kumar K, Kumar N, Kumar A, Mohammed MA, Al-waisy AS, Jaber MM, Pandey NK, Shah R, Saini G, Eid F, Al-andoli MN, Zhang D. Identification of Cardiac Patients Based on the Medical Conditions Using Machine Learning Models. Computational Intelligence and Neuroscience 2022;2022:1-15. [DOI: 10.1155/2022/5882144] [Reference Citation Analysis]
6 Singh J, Hamid MA. Cognitive Computing in Mental Healthcare: a Review of Methods and Technologies for Detection of Mental Disorders. Cogn Comput. [DOI: 10.1007/s12559-022-10042-2] [Reference Citation Analysis]
7 Loh HW, Xu S, Faust O, Ooi CP, Barua PD, Chakraborty S, Tan R, Molinari F, Acharya UR. Application of photoplethysmography signals for healthcare systems: An in-depth review. Computer Methods and Programs in Biomedicine 2022;216:106677. [DOI: 10.1016/j.cmpb.2022.106677] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
8 Altintaş E, Uylaş Aksu Z, Gümüş Demir Z. Machine Learning Techniques for Anxiety Disorder. European Journal of Science and Technology 2021. [DOI: 10.31590/ejosat.999914] [Reference Citation Analysis]
9 [DOI: 10.1109/icdabi53623.2021.9655966] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
10 Meng H, Kang Y, Choi D. Panic Disorder Prediction Model Based on Machine Learning Algorithm. 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture 2021. [DOI: 10.1145/3495018.3495459] [Reference Citation Analysis]
11 [DOI: 10.1145/3458305.3478454] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Vincent PMDR, Mahendran N, Nebhen J, Deepa N, Srinivasan K, Hu YC. Performance Assessment of Certain Machine Learning Models for Predicting the Major Depressive Disorder among IT Professionals during Pandemic times. Comput Intell Neurosci 2021;2021:9950332. [PMID: 33995524 DOI: 10.1155/2021/9950332] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]