BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Squarcina L, Dagnew T, Rivolta M, Bellani M, Sassi R, Brambilla P. Automated cortical thickness and skewness feature selection in bipolar disorder using a semi-supervised learning method. Journal of Affective Disorders 2019;256:416-23. [DOI: 10.1016/j.jad.2019.06.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
Number Citing Articles
1 Rostami M, Berahmand K, Forouzandeh S. A novel method of constrained feature selection by the measurement of pairwise constraints uncertainty. J Big Data 2020;7. [DOI: 10.1186/s40537-020-00352-3] [Cited by in Crossref: 12] [Article Influence: 6.0] [Reference Citation Analysis]
2 Squarcina L, Nosari G, Marin R, Castellani U, Bellani M, Bonivento C, Fabbro F, Molteni M, Brambilla P. Automatic classification of autism spectrum disorder in children using cortical thickness and support vector machine. Brain Behav 2021;11:e2238. [PMID: 34264004 DOI: 10.1002/brb3.2238] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Segato A, Marzullo A, Calimeri F, De Momi E. Artificial intelligence for brain diseases: A systematic review. APL Bioeng 2020;4:041503. [PMID: 33094213 DOI: 10.1063/5.0011697] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
4 Colombo F, Calesella F, Mazza MG, Melloni EMT, Morelli MJ, Scotti GM, Benedetti F, Bollettini I, Vai B. Machine learning approaches for prediction of bipolar disorder based on biological, clinical and neuropsychological markers: a systematic review and meta-analysis. Neurosci Biobehav Rev 2022;:104552. [PMID: 35120970 DOI: 10.1016/j.neubiorev.2022.104552] [Reference Citation Analysis]
5 Chen YL, Tu PC, Huang TH, Bai YM, Su TP, Chen MH, Wu YT. Using Minimal-Redundant and Maximal-Relevant Whole-Brain Functional Connectivity to Classify Bipolar Disorder. Front Neurosci 2020;14:563368. [PMID: 33192250 DOI: 10.3389/fnins.2020.563368] [Reference Citation Analysis]