BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Abdelrahman KM, Chen MY, Dey AK, Virmani R, Finn AV, Khamis RY, Choi AD, Min JK, Williams MC, Buckler AJ, Taylor CA, Rogers C, Samady H, Antoniades C, Shaw LJ, Budoff MJ, Hoffmann U, Blankstein R, Narula J, Mehta NN. Coronary Computed Tomography Angiography From Clinical Uses to Emerging Technologies: JACC State-of-the-Art Review. J Am Coll Cardiol 2020;76:1226-43. [PMID: 32883417 DOI: 10.1016/j.jacc.2020.06.076] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Xu M, Mao C, Chen H, Liu L, Wang Y, Hussain A, Li S, Zhang X, Tuguntaev RG, Liang X, Guo W, Cao F. Osteopontin targeted theranostic nanoprobes for laser-induced synergistic regression of vulnerable atherosclerotic plaques. Acta Pharmaceutica Sinica B 2021. [DOI: 10.1016/j.apsb.2021.12.020] [Reference Citation Analysis]
2 Hage FG. Is SPECT myocardial perfusion imaging on its dying bed? J Nucl Cardiol 2021;28:1813-6. [PMID: 34505262 DOI: 10.1007/s12350-021-02803-7] [Reference Citation Analysis]
3 Korosoglou G, Giusca S. Contrast agent volume in coronary computer tomography angiography-where are the limits? Quant Imaging Med Surg 2021;11:4511-3. [PMID: 34604006 DOI: 10.21037/qims-21-488] [Reference Citation Analysis]
4 Lal BK, Khan AA, Kashyap VS, Chrencik MT, Gupta A, King AH, Patel JB, Martinez-Delcid J, Uceda D, Desikan S, Sikdar S, Sorkin JD, Buckler A. CT angiographic biomarkers help identify vulnerable carotid artery plaque. J Vasc Surg 2021:S0741-5214(21)02443-5. [PMID: 34793923 DOI: 10.1016/j.jvs.2021.10.056] [Reference Citation Analysis]
5 Dou G, Shan D, Wang K, Wang X, Liu Z, Zhang W, Li D, He B, Jing J, Wang S, Chen Y, Yang J. Integrating Coronary Plaque Information from CCTA by ML Predicts MACE in Patients with Suspected CAD. JPM 2022;12:596. [DOI: 10.3390/jpm12040596] [Reference Citation Analysis]
6 Jonas R, Earls J, Marques H, Chang HJ, Choi JH, Doh JH, Her AY, Koo BK, Nam CW, Park HB, Shin S, Cole J, Gimelli A, Khan MA, Lu B, Gao Y, Nabi F, Nakazato R, Schoepf UJ, Driessen RS, Bom MJ, Thompson RC, Jang JJ, Ridner M, Rowan C, Avelar E, Généreux P, Knaapen P, de Waard GA, Pontone G, Andreini D, Al-Mallah MH, Jennings R, Crabtree TR, Villines TC, Min JK, Choi AD. Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence. Open Heart 2021;8:e001832. [PMID: 34785589 DOI: 10.1136/openhrt-2021-001832] [Reference Citation Analysis]
7 Soni M, Ambrosino M, Jacoby DS. The Use of Subclinical Atherosclerosis Imaging to Guide Preventive Cardiology Management. Curr Cardiol Rep 2021;23:61. [PMID: 33961134 DOI: 10.1007/s11886-021-01490-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Sanches PHG, Silva AAR, Porcari AM. Plasma lipid profiles differ among chronic inflammatory diseases. EBioMedicine 2021;70:103526. [PMID: 34391095 DOI: 10.1016/j.ebiom.2021.103526] [Reference Citation Analysis]
9 van Driest F, Bijns C, van der Geest R, Broersen A, Dijkstra J, Jukema J, Scholte A. Correlation between quantification of myocardial area at risk and ischemic burden at cardiac computed tomography. European Journal of Radiology Open 2022;9:100417. [DOI: 10.1016/j.ejro.2022.100417] [Reference Citation Analysis]
10 Antonopoulos AS, Simantiris S, Benetos G, Vlachopoulos C, Tsioufis K, Tousoulis D. Screening of asymptomatic patients with elevated lipoprotein(a) levels by coronary computed tomography angiography. Eur J Prev Cardiol 2022:zwab217. [PMID: 35104322 DOI: 10.1093/eurjpc/zwab217] [Reference Citation Analysis]
11 Logan JK, Ayers MP. Noninvasive Imaging for the Asymptomatic Patient. Medical Clinics of North America 2022;106:377-88. [DOI: 10.1016/j.mcna.2021.11.012] [Reference Citation Analysis]
12 Feldman DI, Latina J, Lovell J, Blumenthal RS, Arbab-Zadeh A. Coronary computed tomography angiography in patients with stable coronary artery disease. Trends Cardiovasc Med 2021:S1050-1738(21)00093-1. [PMID: 34454051 DOI: 10.1016/j.tcm.2021.08.009] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 d'Entremont MA, Couture ÉL, Connelly K, Walling A, Jolly SS, Valettas N, Tsang MB, Mampuya W, Poirier P, Huynh T. Management of the master endurance athlete with stable coronary artery disease. Can J Cardiol 2022:S0828-282X(22)00263-X. [PMID: 35489669 DOI: 10.1016/j.cjca.2022.04.013] [Reference Citation Analysis]
14 Sturts A, Ruzieh M, Dhruva SS, Peterson B, Mandrola JM, Liu G, Redberg RF, Foy AJ. Resource Utilization Following Coronary Computed Tomographic Angiography and Stress Echocardiography in Patients Presenting to the Emergency Department With Chest Pain. Am J Cardiol 2022;163:8-12. [PMID: 34785035 DOI: 10.1016/j.amjcard.2021.09.043] [Reference Citation Analysis]
15 Fuster V. Editor-in-Chief's Top Picks From 2020. J Am Coll Cardiol 2021;77:937-97. [PMID: 33602476 DOI: 10.1016/j.jacc.2020.12.044] [Reference Citation Analysis]
16 Kusmirek JE, Wieben O. Coronary Endothelial Wall Shear Stress: Another Piece of the Puzzle? Radiology 2021;300:557-8. [PMID: 34184938 DOI: 10.1148/radiol.2021211116] [Reference Citation Analysis]
17 Du Y, Yang Z. Diagnostic Value of Multislice Spiral CT Cardiothoracic Combined with Angiography in Acute Chest Pain. J Healthc Eng 2021;2021:5549971. [PMID: 33688419 DOI: 10.1155/2021/5549971] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Fu B, Wei X, Lin Y, Chen J, Yu D. Pathophysiologic Basis and Diagnostic Approaches for Ischemia With Non-obstructive Coronary Arteries: A Literature Review. Front Cardiovasc Med 2022;9:731059. [DOI: 10.3389/fcvm.2022.731059] [Reference Citation Analysis]
19 Seime T, Akbulut AC, Liljeqvist ML, Siika A, Jin H, Winski G, van Gorp RH, Karlöf E, Lengquist M, Buckler AJ, Kronqvist M, Waring OJ, Lindeman JHN, Biessen EAL, Maegdefessel L, Razuvaev A, Schurgers LJ, Hedin U, Matic L. Proteoglycan 4 Modulates Osteogenic Smooth Muscle Cell Differentiation during Vascular Remodeling and Intimal Calcification. Cells 2021;10:1276. [PMID: 34063989 DOI: 10.3390/cells10061276] [Reference Citation Analysis]
20 Seetharam K, Bhat P, Orris M, Prabhu H, Shah J, Asti D, Chawla P, Mir T. Artificial intelligence and machine learning in cardiovascular computed tomography. World J Cardiol 2021; 13(10): 546-555 [PMID: 34754399 DOI: 10.4330/wjc.v13.i10.546] [Reference Citation Analysis]
21 Schlossbauer SA, Faletra FF, Paiocchi VL, Leo LA, Franciosi G, Bonanni M, Angelini G, Pavon AG, Ferrari E, Ho SY, Hahn RT. Multimodality Imaging of the Anatomy of Tricuspid Valve. J Cardiovasc Dev Dis 2021;8:107. [PMID: 34564125 DOI: 10.3390/jcdd8090107] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Karlöf E, Buckler A, Liljeqvist ML, Lengquist M, Kronqvist M, Toonsi MA, Maegdefessel L, Matic LP, Hedin U. Carotid Plaque Phenotyping by Correlating Plaque Morphology from Computed Tomography Angiography with Transcriptional Profiling. Eur J Vasc Endovasc Surg 2021;62:716-26. [PMID: 34511314 DOI: 10.1016/j.ejvs.2021.07.011] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Buckler AJ, Karlöf E, Lengquist M, Gasser TC, Maegdefessel L, Perisic Matic L, Hedin U. Virtual Transcriptomics: Noninvasive Phenotyping of Atherosclerosis by Decoding Plaque Biology From Computed Tomography Angiography Imaging. Arterioscler Thromb Vasc Biol 2021;41:1738-50. [PMID: 33691476 DOI: 10.1161/ATVBAHA.121.315969] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Lu G, Ye W, Ou J, Li X, Tan Z, Li T, Liu H. Coronary Computed Tomography Angiography Assessment of High-Risk Plaques in Predicting Acute Coronary Syndrome. Front Cardiovasc Med 2021;8:743538. [PMID: 34660742 DOI: 10.3389/fcvm.2021.743538] [Reference Citation Analysis]
25 Hajhosseiny R, Munoz C, Cruz G, Khamis R, Kim WY, Prieto C, Botnar RM. Coronary Magnetic Resonance Angiography in Chronic Coronary Syndromes. Front Cardiovasc Med 2021;8:682924. [PMID: 34485397 DOI: 10.3389/fcvm.2021.682924] [Reference Citation Analysis]
26 Graby J, Khavandi A, Thompson D, Downie P, Antoniades C, Rodrigues JCL. CT coronary angiography-guided cardiovascular risk screening in asymptomatic patients: is it time? Clin Radiol 2021;76:801-11. [PMID: 34404515 DOI: 10.1016/j.crad.2021.07.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Kumar V, Weerakoon S, Dey AK, Earls JP, Katz RJ, Reiner JS, Shaw LJ, Blankstein R, Mehta NN, Choi AD. The evolving role of coronary CT angiography in Acute Coronary Syndromes. J Cardiovasc Comput Tomogr 2021;15:384-93. [PMID: 33858808 DOI: 10.1016/j.jcct.2021.02.002] [Reference Citation Analysis]
28 Ghafari C, Carlier S. Stent visualization methods to guide percutaneous coronary interventions and assess long-term patency. World J Cardiol 2021; 13(9): 416-437 [PMID: 34621487 DOI: 10.4330/wjc.v13.i9.416] [Reference Citation Analysis]
29 Cainzos-achirica M, Nasir K. Debates in Cardiac CT: The Force of Data Is with CAC — And It’s Rock Solid. Journal of Cardiovascular Computed Tomography 2022. [DOI: 10.1016/j.jcct.2022.02.002] [Reference Citation Analysis]
30 Nasir K, Ziffer JA, Cainzos-Achirica M, Ali SS, Feldman DI, Arias L, Saxena A, Feldman T, Cury R, Budoff MJ, Fialkow J. The Miami Heart Study (MiHeart) at Baptist Health South Florida, A prospective study of subclinical cardiovascular disease and emerging cardiovascular risk factors in asymptomatic young and middle-aged adults: The Miami Heart Study: Rationale and Design. Am J Prev Cardiol 2021;7:100202. [PMID: 34611641 DOI: 10.1016/j.ajpc.2021.100202] [Reference Citation Analysis]
31 Mehta NN. Epicardial Assessment of Coronary Artery Disease in Inflammatory Diseases: Is it Enough? JACC Cardiovasc Imaging 2021:S1936-878X(21)00187-X. [PMID: 33865786 DOI: 10.1016/j.jcmg.2021.02.013] [Reference Citation Analysis]
32 Bergmark BA, Mathenge N, Merlini PA, Lawrence-wright MB, Giugliano RP. Acute coronary syndromes. The Lancet 2022;399:1347-58. [DOI: 10.1016/s0140-6736(21)02391-6] [Reference Citation Analysis]
33 Ateş AH, Yorgun H, Canpolat U, Kaya EB, Şahiner L, Hazirolan T, Dural M, Okşul M, Şener YZ, Karahan S, Aytemir K. Long-Term Prognostic Value of Coronary Atherosclerotic Plaque Characteristics Assessed by Computerized Tomographic Angiography. Angiology 2021;72:252-9. [PMID: 33118364 DOI: 10.1177/0003319720963677] [Reference Citation Analysis]
34 D’ascenzi F, Baggiano A, Cavigli L, Mandoli GE, Andreini D, Marallo C, Valente S, Focardi M, Cameli M, Pontone G. The role of cardiac computed tomography in sports cardiology: back to the future! European Heart Journal - Cardiovascular Imaging 2022. [DOI: 10.1093/ehjci/jeac069] [Reference Citation Analysis]
35 Rampidis GP, Kampaktsis PΝ, Kouskouras K, Samaras A, Benetos G, Giannopoulos AΑ, Karamitsos T, Kallifatidis A, Samaras A, Vogiatzis I, Hadjimiltiades S, Ziakas A, Buechel RR, Gebhard C, Smilowitz NR, Toutouzas K, Tsioufis K, Prassopoulos P, Karvounis H, Reynolds H, Giannakoulas G. Role of cardiac CT in the diagnostic evaluation and risk stratification of patients with myocardial infarction and non-obstructive coronary arteries (MINOCA): rationale and design of the MINOCA-GR study. BMJ Open 2022;12:e054698. [PMID: 35110321 DOI: 10.1136/bmjopen-2021-054698] [Reference Citation Analysis]
36 Varga-Szemes A, Schoepf UJ, Maurovich-Horvat P, Wang R, Xu L, Dargis DM, Emrich T, Buckler AJ. Coronary plaque assessment of Vasodilative capacity by CT angiography effectively estimates fractional flow reserve. Int J Cardiol 2021;331:307-15. [PMID: 33529657 DOI: 10.1016/j.ijcard.2021.01.040] [Reference Citation Analysis]
37 Zhang X, He D, Xiang Y, Wang C, Liang B, Li B, Qi D, Deng Q, Yu H, Lu Z, Zheng F. DYSF promotes monocyte activation in atherosclerotic cardiovascular disease as a DNA methylation-driven gene. Transl Res 2022:S1931-5244(22)00072-X. [PMID: 35460889 DOI: 10.1016/j.trsl.2022.04.001] [Reference Citation Analysis]
38 Giusca S, Schütz M, Kronbach F, Wolf D, Nunninger P, Korosoglou G. Coronary Computer Tomography Angiography in 2021-Acquisition Protocols, Tips and Tricks and Heading beyond the Possible. Diagnostics (Basel) 2021;11:1072. [PMID: 34200866 DOI: 10.3390/diagnostics11061072] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Welch T, Rampersad F, Motilal S, Seecheran NA. Comparison of cardiac CT angiography coronary artery dimensions and ethnicity in Trinidad: the CADET pilot study. Open Heart 2022;9:e001922. [PMID: 35354659 DOI: 10.1136/openhrt-2021-001922] [Reference Citation Analysis]
40 Lu H, Yao Y, Wang L, Yan J, Tu S, Xie Y, He W, Moraru L. Research Progress of Machine Learning and Deep Learning in Intelligent Diagnosis of the Coronary Atherosclerotic Heart Disease. Computational and Mathematical Methods in Medicine 2022;2022:1-14. [DOI: 10.1155/2022/3016532] [Reference Citation Analysis]
41 Wang Y, Chen H, Sun T, Li A, Wang S, Zhang J, Li S, Zhang Z, Zhu D, Wang X, Cao F. Risk predicting for acute coronary syndrome based on machine learning model with kinetic plaque features from serial coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 2021:jeab101. [PMID: 34151931 DOI: 10.1093/ehjci/jeab101] [Reference Citation Analysis]