1 |
Kaur I, Batra V, Kumar Reddy Bogireddy N, Torres Landa SD, Agarwal V. Detection of organic pollutants, food additives and antibiotics using sustainable carbon dots. Food Chem 2023;406:135029. [PMID: 36463597 DOI: 10.1016/j.foodchem.2022.135029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
2 |
Perumal S, Atchudan R, Jebakumar Immanuel Edison TN, Sangaraju S, Sathyaraj WV, Lee YR. Water Soluble PMPC-Derived Bright Fluorescent Nitrogen/Phosphorous-Doped Carbon Dots for Fluorescent Ink (Anti-Counterfeiting) and Cellular Multicolor Imaging. Polymers 2023;15:1352. [DOI: 10.3390/polym15061352] [Reference Citation Analysis]
|
3 |
Li Q, Wu X, Zhang X, Su W, Tan Y, Fan P, Liu J, Yang S. Green and rapid synthesis of biomass carbon dot-based fluorescence sensing for the sensitive determination of oxytetracycline. Anal Methods 2023. [PMID: 36883525 DOI: 10.1039/d2ay02031a] [Reference Citation Analysis]
|
4 |
Lahari SA, Amreen K, Dubey SK, Ponnalagu RN, Goel S. Optimized porous carbon-fibre microelectrode for multiplexed, highly reproducible and repeatable detection of heavy metals in real water samples. Environ Res 2023;220:115192. [PMID: 36587721 DOI: 10.1016/j.envres.2022.115192] [Reference Citation Analysis]
|
5 |
Xu C, Liu Q, Chu S, Li P, Wang F, Si Y, Mao G, Wu C, Wang H. A microdots array-based fluoremetric assay with superwettability profile for simultaneous and separate analysis of iron and copper in red wine. Analytica Chimica Acta 2023. [DOI: 10.1016/j.aca.2023.341045] [Reference Citation Analysis]
|
6 |
Hou X, Xu J, Zhou P, Dai L, Zhang J, Xiao X, Zhang C, Huo K. Engineered full-color-emissive lignin carbon dots enable selectively fluorescent sensing of metal ions. Industrial Crops and Products 2023;192:116116. [DOI: 10.1016/j.indcrop.2022.116116] [Reference Citation Analysis]
|
7 |
Tammina SK, Khan A, Rhim JW. Advances and prospects of carbon dots for microplastic analysis. Chemosphere 2023;313:137433. [PMID: 36460157 DOI: 10.1016/j.chemosphere.2022.137433] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
An BH, Lee TG, Khan TT, Seo HW, Hwang HJ, Jun YS. Optical and quantitative detection of cobalt ion using graphitic carbon nitride-based chemosensor for hydrometallurgy of waste lithium-ion batteries. Chemosphere 2023;315:137789. [PMID: 36626953 DOI: 10.1016/j.chemosphere.2023.137789] [Reference Citation Analysis]
|
9 |
Wang J, An J, Zhang Z, Zhu H, Liang X, Yang S, Sheng K, Chen L, Lu H, Wang Y. High fluorescent nitrogen−doped carbon dots derived from Sanghuangporus lonicericola for detecting tetracyclines in aquaculture water and rat serum samples. Microchemical Journal 2023. [DOI: 10.1016/j.microc.2023.108517] [Reference Citation Analysis]
|
10 |
Qiu J, Zeng D, Lin Y, Ye W, Chen C, Xu Z, Hu G, Liu Y. Carbon-polymer dot-based UV absorption and fluorescence performances for heavy metal ion detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023;285:121913. [DOI: 10.1016/j.saa.2022.121913] [Reference Citation Analysis]
|
11 |
Torres Landa SD, Kaur I, Agarwal V. Pithecellobium dulce Leaf-Derived Carbon Dots for 4-Nitrophenol and Cr(VI) Detection. Chemosensors 2022;10:532. [DOI: 10.3390/chemosensors10120532] [Reference Citation Analysis]
|
12 |
Li J, Liu P. Facile fabrication of cupric ion-carbon quantum dots as tumor-specific nanotheranostics for cuprous ion-mediated chemodynamic therapy and real-time fluorescence imaging. Materials Today Chemistry 2022;26:101040. [DOI: 10.1016/j.mtchem.2022.101040] [Reference Citation Analysis]
|
13 |
Zhou J, Gui Y, Lv X, He J, Xie F, Li J, Cai J. Nanomaterial-Based Fluorescent Biosensor for Food Safety Analysis. Biosensors (Basel) 2022;12. [PMID: 36551039 DOI: 10.3390/bios12121072] [Reference Citation Analysis]
|
14 |
Wu S, Yang Y, Cheng Y, Wang S, Zhou Z, Zhang P, Zhu X, Wang B, Zhang H, Xie S, Zeng Z, Tang BZ. Fluorogenic detection of mercury ion in aqueous environment using hydrogel‐based AIE sensing films. Aggregate 2022. [DOI: 10.1002/agt2.287] [Reference Citation Analysis]
|
15 |
Teo JYQ, Zheng XT, Seng DHL, Hui HK, Chee PL, Su X, Loh XJ, Lim JYC. Waste Polystyrene‐derived Sulfonated Fluorescent Carbon Nanoparticles for Cation Sensing. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202202720] [Reference Citation Analysis]
|
16 |
Zeng Y, Xu Z, Guo J, Yu X, Zhao P, Song J, Qu J, Chen Y, Li H. Bifunctional Nitrogen and Fluorine Co-Doped Carbon Dots for Selective Detection of Copper and Sulfide Ions in Real Water Samples. Molecules 2022;27:5149. [PMID: 36014385 DOI: 10.3390/molecules27165149] [Reference Citation Analysis]
|
17 |
Li F, Chung Y. Fabrication of “electroactive cells” using bio-inspired polydopamine-derived carbon nanoparticles for manipulation of cells with electrical stimulation. Front Bioeng Biotechnol 2022;10:949308. [DOI: 10.3389/fbioe.2022.949308] [Reference Citation Analysis]
|
18 |
Mejía Ávila J, Rangel Ayala M, Kumar Y, Pérez-tijerina E, Robles MA, Agarwal V. Avocado Seeds Derived Carbon Dots for Highly Sensitive Cu (II)/Cr (VI) Detection and Copper (II) Removal via Flocculation. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.137171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|