BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Madden LR, Nguyen TV, Garcia-Mojica S, Shah V, Le AV, Peier A, Visconti R, Parker EM, Presnell SC, Nguyen DG, Retting KN. Bioprinted 3D Primary Human Intestinal Tissues Model Aspects of Native Physiology and ADME/Tox Functions. iScience. 2018;2:156-167. [PMID: 30428372 DOI: 10.1016/j.isci.2018.03.015] [Cited by in Crossref: 66] [Cited by in F6Publishing: 61] [Article Influence: 22.0] [Reference Citation Analysis]
Number Citing Articles
1 Cui Y, Claus S, Schnell D, Runge F, MacLean C. In-Depth Characterization of EpiIntestinal Microtissue as a Model for Intestinal Drug Absorption and Metabolism in Human. Pharmaceutics 2020;12:E405. [PMID: 32354111 DOI: 10.3390/pharmaceutics12050405] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
2 Grubb ML, Caliari SR. Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomater 2021:S1742-7061(21)00147-1. [PMID: 33716174 DOI: 10.1016/j.actbio.2021.03.006] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Fernandes S, Cassani M, Pagliari S, Filipensky P, Cavalieri F, Forte G. Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy. Curr Med Chem 2020;27:7234-55. [PMID: 32586245 DOI: 10.2174/0929867327666200625151134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Shpichka A, Bikmulina P, Peshkova M, Kosheleva N, Zurina I, Zahmatkesh E, Khoshdel-Rad N, Lipina M, Golubeva E, Butnaru D, Svistunov A, Vosough M, Timashev P. Engineering a Model to Study Viral Infections: Bioprinting, Microfluidics, and Organoids to Defeat Coronavirus Disease 2019 (COVID-19). Int J Bioprint 2020;6:302. [PMID: 33089000 DOI: 10.18063/ijb.v6i4.302] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
5 Moldovan NI. Three-Dimensional Bioprinting of Anatomically Realistic Tissue Constructs for Disease Modeling and Drug Testing. Tissue Eng Part C Methods 2021;27:225-31. [PMID: 33446076 DOI: 10.1089/ten.TEC.2020.0293] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Weindl G. Immunocompetent Human Intestinal Models in Preclinical Drug Development. Handb Exp Pharmacol 2021;265:219-33. [PMID: 33349897 DOI: 10.1007/164_2020_429] [Reference Citation Analysis]
7 Satpathy A, Datta P, Wu Y, Ayan B, Bayram E, Ozbolat IT. Developments with 3D bioprinting for novel drug discovery. Expert Opin Drug Discov 2018;13:1115-29. [PMID: 30384781 DOI: 10.1080/17460441.2018.1542427] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
8 Ramzy GM, Koessler T, Ducrey E, McKee T, Ris F, Buchs N, Rubbia-Brandt L, Dietrich PY, Nowak-Sliwinska P. Patient-Derived In Vitro Models for Drug Discovery in Colorectal Carcinoma. Cancers (Basel) 2020;12:E1423. [PMID: 32486365 DOI: 10.3390/cancers12061423] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
9 Langer EM, Allen-Petersen BL, King SM, Kendsersky ND, Turnidge MA, Kuziel GM, Riggers R, Samatham R, Amery TS, Jacques SL, Sheppard BC, Korkola JE, Muschler JL, Thibault G, Chang YH, Gray JW, Presnell SC, Nguyen DG, Sears RC. Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting. Cell Rep 2019;26:608-623.e6. [PMID: 30650355 DOI: 10.1016/j.celrep.2018.12.090] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 65.0] [Reference Citation Analysis]
10 Shinohara M, Arakawa H, Oda Y, Shiraki N, Sugiura S, Nishiuchi T, Satoh T, Iino K, Leo S, Kato Y, Araya K, Kawanishi T, Nakatsuji T, Mitsuta M, Inamura K, Goto T, Shinha K, Nihei W, Komori K, Nishikawa M, Kume S, Kato Y, Kanamori T, Sakai Y, Kimura H. Coculture with hiPS-derived intestinal cells enhanced human hepatocyte functions in a pneumatic-pressure-driven two-organ microphysiological system. Sci Rep 2021;11:5437. [PMID: 33686099 DOI: 10.1038/s41598-021-84861-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Creff J, Courson R, Mangeat T, Foncy J, Souleille S, Thibault C, Besson A, Malaquin L. Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography. Biomaterials 2019;221:119404. [PMID: 31419651 DOI: 10.1016/j.biomaterials.2019.119404] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 14.5] [Reference Citation Analysis]
12 Dzobo K, Motaung KSCM, Adesida A. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. Int J Mol Sci 2019;20:E4628. [PMID: 31540457 DOI: 10.3390/ijms20184628] [Cited by in Crossref: 67] [Cited by in F6Publishing: 53] [Article Influence: 33.5] [Reference Citation Analysis]
13 Fonseca AC, Melchels FPW, Ferreira MJS, Moxon SR, Potjewyd G, Dargaville TR, Kimber SJ, Domingos M. Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chem Rev 2020;120:11128-74. [PMID: 32937071 DOI: 10.1021/acs.chemrev.0c00342] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
14 Gommers LM, Skrzypek K, Bolhuis-versteeg L, Pinckaers NE, Vrijhof R, van der Wijst J, de Baaij JH, Stamatialis D, Hoenderop JG. Development of a villi-like micropatterned porous membrane for intestinal magnesium and calcium uptake studies. Acta Biomaterialia 2019;99:110-20. [DOI: 10.1016/j.actbio.2019.08.041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
15 Ruiz-Espigares J, Nieto D, Moroni L, Jiménez G, Marchal JA. Evolution of Metastasis Study Models toward Metastasis-On-A-Chip: The Ultimate Model? Small 2021;17:e2006009. [PMID: 33705602 DOI: 10.1002/smll.202006009] [Reference Citation Analysis]
16 Miri AK, Mostafavi E, Khorsandi D, Hu SK, Malpica M, Khademhosseini A. Bioprinters for organs-on-chips. Biofabrication 2019;11:042002. [PMID: 31170695 DOI: 10.1088/1758-5090/ab2798] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 17.5] [Reference Citation Analysis]
17 Qi D, Shi W, Black AR, Kuss MA, Pang X, He Y, Liu B, Duan B. Repair and regeneration of small intestine: A review of current engineering approaches. Biomaterials 2020;240:119832. [PMID: 32113114 DOI: 10.1016/j.biomaterials.2020.119832] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
18 Delon LC, Guo Z, Oszmiana A, Chien C, Gibson R, Prestidge C, Thierry B. A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models. Biomaterials 2019;225:119521. [DOI: 10.1016/j.biomaterials.2019.119521] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 15.5] [Reference Citation Analysis]
19 Hase K, Stahmer L, Shammas H, Peter C, Bohnhorst B, Das AM. Analysis of Sirtuin 1 and Sirtuin 3 at Enzyme and Protein Levels in Human Breast Milk during the Neonatal Period. Metabolites 2021;11:348. [PMID: 34072556 DOI: 10.3390/metabo11060348] [Reference Citation Analysis]
20 Biffi G, Tuveson DA. Diversity and Biology of Cancer-Associated Fibroblasts. Physiol Rev 2021;101:147-76. [PMID: 32466724 DOI: 10.1152/physrev.00048.2019] [Cited by in Crossref: 38] [Cited by in F6Publishing: 45] [Article Influence: 38.0] [Reference Citation Analysis]
21 Huang J, Ren Y, Wu X, Li Z, Ren J. Gut bioengineering promotes gut repair and pharmaceutical research: a review. J Tissue Eng 2019;10:2041731419839846. [PMID: 31037215 DOI: 10.1177/2041731419839846] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
22 Saygili E, Dogan-gurbuz AA, Yesil-celiktas O, Draz MS. 3D bioprinting: A powerful tool to leverage tissue engineering and microbial systems. Bioprinting 2020;18:e00071. [DOI: 10.1016/j.bprint.2019.e00071] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 14.0] [Reference Citation Analysis]
23 Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L, Juncker D, Zhang YS. Emerging Technologies in Multi-Material Bioprinting. Adv Mater 2021;:e2104730. [PMID: 34596923 DOI: 10.1002/adma.202104730] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Macedo MH, Martínez E, Barrias CC, Sarmento B. Development of an Improved 3D in vitro Intestinal Model to Perform Permeability Studies of Paracellular Compounds. Front Bioeng Biotechnol 2020;8:524018. [PMID: 33042961 DOI: 10.3389/fbioe.2020.524018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
25 Miri AK, Mirzaee I, Hassan S, Mesbah Oskui S, Nieto D, Khademhosseini A, Zhang YS. Effective bioprinting resolution in tissue model fabrication. Lab Chip 2019;19:2019-37. [PMID: 31080979 DOI: 10.1039/c8lc01037d] [Cited by in Crossref: 59] [Cited by in F6Publishing: 23] [Article Influence: 29.5] [Reference Citation Analysis]
26 Zhang J, Hernandez-Gordillo V, Trapecar M, Wright C, Taketani M, Schneider K, Chen WLK, Stas E, Breault DT, Carrier RL, Voigt CA, Griffith LG. Coculture of primary human colon monolayer with human gut bacteria. Nat Protoc 2021;16:3874-900. [PMID: 34183870 DOI: 10.1038/s41596-021-00562-w] [Reference Citation Analysis]
27 Patient JD, Hajiali H, Harris K, Abrahamsson B, Tannergren C, White LJ, Ghaemmaghami AM, Williams PM, Roberts CJ, Rose FRAJ. Nanofibrous Scaffolds Support a 3D in vitro Permeability Model of the Human Intestinal Epithelium. Front Pharmacol 2019;10:456. [PMID: 31133850 DOI: 10.3389/fphar.2019.00456] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
28 Stresser DM, Sun J, Wilson SS. Evaluation of Tissue Stem Cell-Derived Human Intestinal Organoids, a Physiologically Relevant Model to Evaluate Cytochrome P450 Induction in Gut. Drug Metab Dispos 2021;49:245-53. [PMID: 33355212 DOI: 10.1124/dmd.120.000281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Soto F, Guimarães CF, Reis RL, Franco W, Rizvi I, Demirci U. Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models. Cancer Lett 2021;504:116-24. [PMID: 33577978 DOI: 10.1016/j.canlet.2021.01.023] [Reference Citation Analysis]
30 Yilmaz B, Tahmasebifar A, Baran ET. Bioprinting Technologies in Tissue Engineering. In: Silva AC, Moreira JN, Lobo JMS, Almeida H, editors. Current Applications of Pharmaceutical Biotechnology. Cham: Springer International Publishing; 2020. pp. 279-319. [DOI: 10.1007/10_2019_108] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
31 Bhattacharya S, Calar K, de la Puente P. Mimicking tumor hypoxia and tumor-immune interactions employing three-dimensional in vitro models. J Exp Clin Cancer Res 2020;39:75. [PMID: 32357910 DOI: 10.1186/s13046-020-01583-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
32 Lemmens G, Van Camp A, Kourula S, Vanuytsel T, Augustijns P. Drug Disposition in the Lower Gastrointestinal Tract: Targeting and Monitoring. Pharmaceutics 2021;13:161. [PMID: 33530468 DOI: 10.3390/pharmaceutics13020161] [Reference Citation Analysis]
33 Dutton JS, Hinman SS, Kim R, Wang Y, Allbritton NL. Primary Cell-Derived Intestinal Models: Recapitulating Physiology. Trends Biotechnol 2019;37:744-60. [PMID: 30591184 DOI: 10.1016/j.tibtech.2018.12.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 12.0] [Reference Citation Analysis]
34 Ioannidis K, Danalatos RI, Champeris Tsaniras S, Kaplani K, Lokka G, Kanellou A, Papachristou DJ, Bokias G, Lygerou Z, Taraviras S. A Custom Ultra-Low-Cost 3D Bioprinter Supports Cell Growth and Differentiation. Front Bioeng Biotechnol 2020;8:580889. [PMID: 33251196 DOI: 10.3389/fbioe.2020.580889] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
35 Galliger Z, Vogt CD, Panoskaltsis-Mortari A. 3D bioprinting for lungs and hollow organs. Transl Res 2019;211:19-34. [PMID: 31150600 DOI: 10.1016/j.trsl.2019.05.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 14.5] [Reference Citation Analysis]
36 Fetah K, Tebon P, Goudie MJ, Eichenbaum J, Ren L, Barros N, Nasiri R, Ahadian S, Ashammakhi N, Dokmeci MR, Khademhosseini A. The emergence of 3D bioprinting in organ-on-chip systems. Prog Biomed Eng 2019;1:012001. [DOI: 10.1088/2516-1091/ab23df] [Cited by in Crossref: 36] [Cited by in F6Publishing: 13] [Article Influence: 18.0] [Reference Citation Analysis]
37 Shen JX, Youhanna S, Zandi Shafagh R, Kele J, Lauschke VM. Organotypic and Microphysiological Models of Liver, Gut, and Kidney for Studies of Drug Metabolism, Pharmacokinetics, and Toxicity. Chem Res Toxicol 2020;33:38-60. [DOI: 10.1021/acs.chemrestox.9b00245] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
38 Jiao J, Huang J, Zhang Z. Hydrogels based on chitosan in tissue regeneration: How do they work? A mini review. J Appl Polym Sci 2019;136:47235. [DOI: 10.1002/app.47235] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
39 Winkler TE, Feil M, Stronkman EFGJ, Matthiesen I, Herland A. Low-cost microphysiological systems: feasibility study of a tape-based barrier-on-chip for small intestine modeling. Lab Chip 2020;20:1212-26. [DOI: 10.1039/d0lc00009d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 12.0] [Reference Citation Analysis]
40 Elemoso A, Shalunov G, Balakhovsky YM, Ostrovskiy AY, Khesuani YD. 3D Bioprinting: The Roller Coaster Ride to Commercialization. Int J Bioprint 2020;6:301. [PMID: 33088989 DOI: 10.18063/ijb.v6i3.301] [Reference Citation Analysis]
41 Celikkin N, Presutti D, Maiullari F, Fornetti E, Agarwal T, Paradiso A, Volpi M, Święszkowski W, Bearzi C, Barbetta A, Zhang YS, Gargioli C, Rizzi R, Costantini M. Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies. Front Bioeng Biotechnol 2021;9:732130. [PMID: 34604190 DOI: 10.3389/fbioe.2021.732130] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Volpe DA. Advances in cell-based permeability assays to screen drugs for intestinal absorption. Expert Opinion on Drug Discovery 2020;15:539-49. [DOI: 10.1080/17460441.2020.1735347] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
43 Huang J, Jiang Y, Ren Y, Liu Y, Wu X, Li Z, Ren J. Biomaterials and biosensors in intestinal organoid culture, a progress review. J Biomed Mater Res A 2020;108:1501-8. [PMID: 32170907 DOI: 10.1002/jbm.a.36921] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
44 Schmidt C, Markus J, Kandarova H, Wiest J. Tissue-on-a-Chip: Microphysiometry With Human 3D Models on Transwell Inserts. Front Bioeng Biotechnol 2020;8:760. [PMID: 32850693 DOI: 10.3389/fbioe.2020.00760] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Roh TT, Chen Y, Rudolph S, Gee M, Kaplan DL. InVitro Models of Intestine Innate Immunity. Trends Biotechnol 2021;39:274-85. [PMID: 32854949 DOI: 10.1016/j.tibtech.2020.07.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Ramadan Q, Fardous RS, Hazaymeh R, Alshmmari S, Zourob M. Pharmacokinetics-On-a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME. Adv Biol (Weinh) 2021;:e2100775. [PMID: 34323392 DOI: 10.1002/adbi.202100775] [Reference Citation Analysis]
47 Ladaycia A, Loretz B, Passirani C, Lehr CM, Lepeltier E. Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Adv Drug Deliv Rev 2021;170:44-70. [PMID: 33388279 DOI: 10.1016/j.addr.2020.12.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Helena Macedo M, Baião A, Pinto S, Barros AS, Almeida H, Almeida A, das Neves J, Sarmento B. Mucus-producing 3D cell culture models. Adv Drug Deliv Rev 2021;178:113993. [PMID: 34619286 DOI: 10.1016/j.addr.2021.113993] [Reference Citation Analysis]
49 Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. Small 2021;17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
50 Azevedo C, Macedo MH, Almeida A, Pinto S, van Loon JJWA, Sarmento B. The effect of hypergravity in intestinal permeability of nanoformulations and molecules. Eur J Pharm Biopharm 2021;163:38-48. [PMID: 33785416 DOI: 10.1016/j.ejpb.2021.03.013] [Reference Citation Analysis]
51 Creff J, Malaquin L, Besson A. In vitro models of intestinal epithelium: Toward bioengineered systems. J Tissue Eng 2021;12:2041731420985202. [PMID: 34104387 DOI: 10.1177/2041731420985202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Castro F, Leite Pereira C, Helena Macedo M, Almeida A, José Silveira M, Dias S, Patrícia Cardoso A, José Oliveira M, Sarmento B. Advances on colorectal cancer 3D models: The needed translational technology for nanomedicine screening. Adv Drug Deliv Rev 2021;175:113824. [PMID: 34090966 DOI: 10.1016/j.addr.2021.06.001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
53 Ren Y, Yang X, Ma Z, Sun X, Zhang Y, Li W, Yang H, Qiang L, Yang Z, Liu Y, Deng C, Zhou L, Wang T, Lin J, Li T, Wu T, Wang J. Developments and Opportunities for 3D Bioprinted Organoids. Int J Bioprint 2021;7:364. [PMID: 34286150 DOI: 10.18063/ijb.v7i3.364] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Kabir A, Datta P, Oh J, Williams A, Ozbolat V, Unutmaz D, T Ozbolat I. 3D Bioprinting for fabrication of tissue models of COVID-19 infection. Essays Biochem 2021:EBC20200129. [PMID: 34028514 DOI: 10.1042/EBC20200129] [Reference Citation Analysis]
55 Kämpfer AAM, Busch M, Schins RPF. Advanced In Vitro Testing Strategies and Models of the Intestine for Nanosafety Research. Chem Res Toxicol 2020;33:1163-78. [PMID: 32383381 DOI: 10.1021/acs.chemrestox.0c00079] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
56 Elalouf A. Immune response against the biomaterials used in 3D bioprinting of organs. Transpl Immunol 2021;:101446. [PMID: 34389430 DOI: 10.1016/j.trim.2021.101446] [Reference Citation Analysis]
57 Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov 2020;19:277-89. [PMID: 31848464 DOI: 10.1038/s41573-019-0053-0] [Cited by in Crossref: 113] [Cited by in F6Publishing: 90] [Article Influence: 56.5] [Reference Citation Analysis]
58 Speer JE, Wang Y, Fallon JK, Smith PC, Allbritton NL. Evaluation of human primary intestinal monolayers for drug metabolizing capabilities. J Biol Eng. 2019;13:82. [PMID: 31709009 DOI: 10.1186/s13036-019-0212-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
59 Speer JE, Gunasekara DB, Wang Y, Fallon JK, Attayek PJ, Smith PC, Sims CE, Allbritton NL. Molecular transport through primary human small intestinal monolayers by culture on a collagen scaffold with a gradient of chemical cross-linking. J Biol Eng 2019;13:36. [PMID: 31061676 DOI: 10.1186/s13036-019-0165-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
60 Xu ZY, Ren HJ, Huang JJ, Li ZA, Ren JA. Application of a 3D-printed ”fistula stent” in plugging enteroatmospheric fistula with open abdomen: A case report. World J Gastroenterol 2019; 25(14): 1775-1782 [PMID: 31011261 DOI: 10.3748/wjg.v25.i14.1775] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
61 Zhang J, Huang YJ, Yoon JY, Kemmitt J, Wright C, Schneider K, Sphabmixay P, Hernandez-Gordillo V, Holcomb SJ, Bhushan B, Rohatgi G, Benton K, Carpenter D, Kester JC, Eng G, Breault DT, Yilmaz O, Taketani M, Voigt CA, Carrier RL, Trumper DL, Griffith LG. Primary human colonic mucosal barrier crosstalk with super oxygen-sensitive Faecalibacterium prausnitzii in continuous culture. Med (N Y) 2021;2:74-98.e9. [PMID: 33511375 DOI: 10.1016/j.medj.2020.07.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]