BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chakraborty K, Chatterjee S, Bhattacharyya A. Modulation of phenotypic and functional maturation of murine bone-marrow-derived dendritic cells (BMDCs) induced by cadmium chloride. International Immunopharmacology 2014;20:131-40. [DOI: 10.1016/j.intimp.2014.02.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
Number Citing Articles
1 Obinna UO, Chukwumere UI, Ogugua EA, Augustine IO. ROLE OF CLOVE OIL IN CADMIUM-INDUCED CHANGES IN TUMOR NECROSIS FACTOR (TNFα) AND LYMPHATIC TISSUES OF WISTAR RATS. Journal of Trace Elements and Minerals 2022. [DOI: 10.1016/j.jtemin.2022.100040] [Reference Citation Analysis]
2 Wang Z, Sun Y, Yao W, Ba Q, Wang H. Effects of Cadmium Exposure on the Immune System and Immunoregulation. Front Immunol 2021;12:695484. [PMID: 34354707 DOI: 10.3389/fimmu.2021.695484] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
3 Yi L, Dai J, Chen Y, Tong Y, Li Y, Fu G, Teng Z, Huang J, Quan C, Zhang Z, Zhou T, Zhang L, Shi Y. Reproductive toxicity of cadmium in pubertal male rats induced by cell apoptosis. Toxicol Ind Health 2021;37:469-80. [PMID: 34128436 DOI: 10.1177/07482337211022615] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
4 Mirkov I, Popov Aleksandrov A, Ninkov M, Tucovic D, Kulas J, Zeljkovic M, Popovic D, Kataranovski M. Immunotoxicology of cadmium: Cells of the immune system as targets and effectors of cadmium toxicity. Food Chem Toxicol 2021;149:112026. [PMID: 33508420 DOI: 10.1016/j.fct.2021.112026] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
5 Pinder M, Fry RC, Alexis NE. Environmental contaminants and the immune system: A systems perspective. Environmental Epigenetics in Toxicology and Public Health 2020. [DOI: 10.1016/b978-0-12-819968-8.00009-3] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 Chakraborty K, Dey A, Bhattacharyya A, Dasgupta SC. Anti-fibrotic effect of black tea (Camellia sinensis) extract in experimental pulmonary fibrosis. Tissue and Cell 2019;56:14-22. [DOI: 10.1016/j.tice.2018.11.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
7 Abarikwu SO, Wokoma AFS, Mgbudom-Okah CJ, Omeodu SI, Ohanador R. Effect of Fe and Cd Co-Exposure on Testicular Steroid Metabolism, Morphometry, and Spermatogenesis in Mice. Biol Trace Elem Res 2019;190:109-23. [PMID: 30291518 DOI: 10.1007/s12011-018-1536-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
8 Chakraborty K, Chatterjee S, Bhattacharyya A. Impact of Treg on other T cell subsets in progression of fibrosis in experimental lung fibrosis. Tissue Cell 2018;53:87-92. [PMID: 30060832 DOI: 10.1016/j.tice.2018.06.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
9 Ye L, Jiang Y, Yang G, Yang W, Hu J, Cui Y, Shi C, Liu J, Wang C. Murine bone marrow-derived DCs activated by porcine rotavirus stimulate the Th1 subtype response in vitro. Microb Pathog 2017;110:325-34. [PMID: 28710013 DOI: 10.1016/j.micpath.2017.07.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
10 Liu J, Wei S, Liu L, Shan F, Zhao Y, Shen G. The role of porcine reproductive and respiratory syndrome virus infection in immune phenotype and Th1/Th2 balance of dendritic cells. Developmental & Comparative Immunology 2016;65:245-52. [DOI: 10.1016/j.dci.2016.07.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
11 Tong C, Cui Z, Sun X, Lei L, Feng X, Sun C, Gu J, Han W. Mannan Derivatives Instruct Dendritic Cells to Induce Th1/Th2 Cells Polarization via Differential Mitogen-Activated Protein Kinase Activation. Scand J Immunol 2016;83:10-7. [PMID: 26332129 DOI: 10.1111/sji.12369] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
12 Xu X, Gao Y, Shan F, Feng J. A novel role for RGMa in modulation of bone marrow-derived dendritic cells maturation induced by lipopolysaccharide. Int Immunopharmacol 2016;33:99-107. [PMID: 26896667 DOI: 10.1016/j.intimp.2016.02.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
13 Li Y, Sheng K, Chen J, Wu Y, Zhang F, Chang Y, Wu H, Fu J, Zhang L, Wei W. Regulation of PGE2 signaling pathways and TNF-alpha signaling pathways on the function of bone marrow-derived dendritic cells and the effects of CP-25. Eur J Pharmacol 2015;769:8-21. [PMID: 26415983 DOI: 10.1016/j.ejphar.2015.09.036] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
14 Feng H, Fan J, Song Z, Du X, Chen Y, Wang J, Song G. Characterization and immunoenhancement activities of Eucommia ulmoides polysaccharides. Carbohydr Polym 2016;136:803-11. [PMID: 26572415 DOI: 10.1016/j.carbpol.2015.09.079] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 4.5] [Reference Citation Analysis]