BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schroeder JE, Mosheiff R. Tissue engineering approaches for bone repair: Concepts and evidence. Injury 2011;42:609-13. [DOI: 10.1016/j.injury.2011.03.029] [Cited by in Crossref: 97] [Cited by in F6Publishing: 81] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Meskinfam M, Bertoldi S, Albanese N, Cerri A, Tanzi M, Imani R, Baheiraei N, Farokhi M, Farè S. Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Materials Science and Engineering: C 2018;82:130-40. [DOI: 10.1016/j.msec.2017.08.064] [Cited by in Crossref: 49] [Cited by in F6Publishing: 35] [Article Influence: 12.3] [Reference Citation Analysis]
2 Lacroix J, Jallot E, Nedelec J, Lao J. Influence of Glass Scaffolds Macroporosity on the Bioactive Process. J Phys Chem B 2013;117:510-7. [DOI: 10.1021/jp309731v] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
3 Rausch V, Seybold D, Königshausen M, Köller M, Schildhauer TA, Geßmann J. [Basic principles of fracture healing]. Orthopade 2017;46:640-7. [PMID: 28718007 DOI: 10.1007/s00132-017-3449-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
4 Yao Q, Jing J, Zeng Q, Lu TL, Liu Y, Zheng X, Chen Q. Bilayered BMP2 Eluting Coatings on Graphene Foam by Electrophoretic Deposition: Electroresponsive BMP2 Release and Enhancement of Osteogenic Differentiation. ACS Appl Mater Interfaces 2017;9:39962-70. [DOI: 10.1021/acsami.7b10180] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
5 Li J, Jahr H, Zheng W, Ren PG. Visualizing Angiogenesis by Multiphoton Microscopy In Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair. J Vis Exp 2017. [PMID: 28930985 DOI: 10.3791/55381] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
6 Tilkin RG, Régibeau N, Lambert SD, Grandfils C. Correlation between Surface Properties of Polystyrene and Polylactide Materials and Fibroblast and Osteoblast Cell Line Behavior: A Critical Overview of the Literature. Biomacromolecules 2020;21:1995-2013. [PMID: 32181654 DOI: 10.1021/acs.biomac.0c00214] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ashammakhi N, Darabi MA, Kehr NS, Erdem A, Hu S, Dokmeci MR, Nasr AS, Khademhosseini A. Advances in Controlled Oxygen Generating Biomaterials for Tissue Engineering and Regenerative Therapy. Biomacromolecules 2020;21:56-72. [DOI: 10.1021/acs.biomac.9b00546] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
8 Arsiwala A, Desai P, Patravale V. Recent advances in micro/nanoscale biomedical implants. Journal of Controlled Release 2014;189:25-45. [DOI: 10.1016/j.jconrel.2014.06.021] [Cited by in Crossref: 45] [Cited by in F6Publishing: 27] [Article Influence: 5.6] [Reference Citation Analysis]
9 Tilkin RG, Colle X, Argento Finol A, Régibeau N, Mahy JG, Grandfils C, Lambert SD. Protein encapsulation in functionalized sol-gel silica: Effect of the encapsulation method on the release kinetics and the activity. Microporous and Mesoporous Materials 2020;308:110502. [DOI: 10.1016/j.micromeso.2020.110502] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Lemonnier S, Bouderlique T, Naili S, Rouard H, Courty J, Chevallier N, Albanese P, Lemaire T. Cell Colonization Ability of a Commercialized Large Porous Alveolar Scaffold. Appl Bionics Biomech 2017;2017:8949264. [PMID: 29386882 DOI: 10.1155/2017/8949264] [Reference Citation Analysis]
11 Suliman S, Xing Z, Wu X, Xue Y, Pedersen TO, Sun Y, Døskeland AP, Nickel J, Waag T, Lygre H, Finne-Wistrand A, Steinmüller-Nethl D, Krueger A, Mustafa K. Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. J Control Release 2015;197:148-57. [PMID: 25445698 DOI: 10.1016/j.jconrel.2014.11.003] [Cited by in Crossref: 83] [Cited by in F6Publishing: 78] [Article Influence: 10.4] [Reference Citation Analysis]
12 Zhao D, Lei L, Wang S, Nie H. Understanding cell homing-based tissue regeneration from the perspective of materials. J Mater Chem B 2015;3:7319-33. [DOI: 10.1039/c5tb01188d] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 1.6] [Reference Citation Analysis]
13 Padalhin AR, Thuy Ba Linh N, Ki Min Y, Lee BT. Evaluation of the cytocompatibility hemocompatibility in vivo bone tissue regenerating capability of different PCL blends. J Biomater Sci Polym Ed 2014;25:487-503. [PMID: 24450757 DOI: 10.1080/09205063.2013.878870] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
14 Ayoub MA, El-Rosasy MA. Hybrid grafting of post-traumatic bone defects using β-tricalcium phosphate and demineralized bone matrix. Eur J Orthop Surg Traumatol 2014;24:663-70. [PMID: 23756643 DOI: 10.1007/s00590-013-1253-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
15 Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The role of gap junctions and mechanical loading on mineral formation in a collagen-I scaffold seeded with osteoprogenitor cells. Tissue Eng Part A 2015;21:1720-32. [PMID: 25752490 DOI: 10.1089/ten.TEA.2014.0522] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
16 Rao RR, Stegemann JP. Cell-based approaches to the engineering of vascularized bone tissue. Cytotherapy 2013;15:1309-22. [PMID: 23999157 DOI: 10.1016/j.jcyt.2013.06.005] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 5.8] [Reference Citation Analysis]
17 Peric M, Dumic-cule I, Grcevic D, Matijasic M, Verbanac D, Paul R, Grgurevic L, Trkulja V, Bagi CM, Vukicevic S. The rational use of animal models in the evaluation of novel bone regenerative therapies. Bone 2015;70:73-86. [DOI: 10.1016/j.bone.2014.07.010] [Cited by in Crossref: 81] [Cited by in F6Publishing: 71] [Article Influence: 11.6] [Reference Citation Analysis]
18 Park W, Ishijima M, Hirota M, Soltanzadeh P, Ogawa T. Engineering bone-implant integration with photofunctionalized titanium microfibers. J Biomater Appl 2016;30:1242-50. [PMID: 26656313 DOI: 10.1177/0885328215620034] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
19 Jin M, Seo SH, Kim BS, Hwang S, Kang YG, Shin JW, Cho KH, Byeon J, Shin MC, Kim D, Yoon C, Min KA. Combined Application of Prototype Ultrasound and BSA-Loaded PLGA Particles for Protein Delivery. Pharm Res 2021;38:1455-66. [PMID: 34398405 DOI: 10.1007/s11095-021-03091-z] [Reference Citation Analysis]
20 Peña Fernández M, Dall’ara E, Bodey AJ, Parwani R, Barber AH, Blunn GW, Tozzi G. Full-Field Strain Analysis of Bone–Biomaterial Systems Produced by the Implantation of Osteoregenerative Biomaterials in an Ovine Model. ACS Biomater Sci Eng 2019;5:2543-54. [DOI: 10.1021/acsbiomaterials.8b01044] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
21 Grassmann JP, Schneppendahl J, Sager M, Hakimi AR, Herten M, Loegters TT, Wild M, Hakimi M, Windolf J, Jungbluth P. The effect of bone marrow concentrate and hyperbaric oxygen therapy on bone repair. J Mater Sci: Mater Med 2015;26. [DOI: 10.1007/s10856-014-5331-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
22 Yao Q, Liu Y, Sun H. Heparin-dopamine functionalized graphene foam for sustained release of bone morphogenetic protein-2. J Tissue Eng Regen Med 2018;12:1519-29. [PMID: 29702734 DOI: 10.1002/term.2681] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
23 Moreno-Garibaldi P, Beltrán-Fernández JA, Yescas-Hernandez JA, González-Rebattu M, Carrera-Espinoza R, Hernández-Gómez LH, López-Liévano DR, Pava-Chipol ND, Pava-Chipol JF, Urriolagoitia-Calderon GM. Identification of Stress Fields in a Customized Mandibular Reconstruction Based on a Photoelastic Model. J Craniofac Surg 2019;30:2358-61. [PMID: 31609943 DOI: 10.1097/SCS.0000000000005901] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
24 Fukuba S, Okada M, Nohara K, Iwata T. Alloplastic Bone Substitutes for Periodontal and Bone Regeneration in Dentistry: Current Status and Prospects. Materials (Basel) 2021;14:1096. [PMID: 33652888 DOI: 10.3390/ma14051096] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Rezk AI, Bhattarai DP, Park J, Park CH, Kim CS. Polyaniline-coated titanium oxide nanoparticles and simvastatin-loaded poly(ε-caprolactone) composite nanofibers scaffold for bone tissue regeneration application. Colloids and Surfaces B: Biointerfaces 2020;192:111007. [DOI: 10.1016/j.colsurfb.2020.111007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
26 Malladi L, Mahapatro A, Gomes AS. Fabrication of magnesium-based metallic scaffolds for bone tissue engineering. Materials Technology 2017;33:173-82. [DOI: 10.1080/10667857.2017.1404278] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 3.6] [Reference Citation Analysis]
27 Sanchez-rexach E, Meaurio E, Sarasua J. Recent developments in drug eluting devices with tailored interfacial properties. Advances in Colloid and Interface Science 2017;249:181-91. [DOI: 10.1016/j.cis.2017.05.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
28 Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev 2013;19:308-26. [PMID: 23268651 DOI: 10.1089/ten.TEB.2012.0138] [Cited by in Crossref: 98] [Cited by in F6Publishing: 84] [Article Influence: 10.9] [Reference Citation Analysis]
29 Miszuk JM, Xu T, Yao Q, Fang F, Childs JD, Hong Z, Tao J, Fong H, Sun H. Functionalization of PCL-3D Electrospun Nanofibrous Scaffolds for Improved BMP2-Induced Bone Formation. Appl Mater Today 2018;10:194-202. [PMID: 29577064 DOI: 10.1016/j.apmt.2017.12.004] [Cited by in Crossref: 67] [Cited by in F6Publishing: 55] [Article Influence: 13.4] [Reference Citation Analysis]
30 Cohn Yakubovich D, Eliav U, Yalon E, Schary Y, Sheyn D, Cook-wiens G, Sun S, Mckenna CE, Lev S, Binshtok AM, Pelled G, Navon G, Gazit D, Gazit Z. Teriparatide attenuates scarring around murine cranial bone allograft via modulation of angiogenesis. Bone 2017;97:192-200. [DOI: 10.1016/j.bone.2017.01.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
31 Yin LH, Cheng WX, Qin ZS, Sun KM, Zhong M, Wang JK, Gao WY, Yu ZH. Effects of ginsenoside Rg-1 on the proliferation and osteogenic differentiation of human periodontal ligament stem cells. Chin J Integr Med 2015;21:676-81. [PMID: 25491536 DOI: 10.1007/s11655-014-1856-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
32 Lau TT, Lee LQ, Vo BN, Su K, Wang DA. Inducing ossification in an engineered 3D scaffold-free living cartilage template. Biomaterials 2012;33:8406-17. [PMID: 22925815 DOI: 10.1016/j.biomaterials.2012.08.025] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
33 Dorry S, Moslemi HR, Yousefi MH, Hamedani MA, Khaligh SG. Study of the Effect of Topical Ozonated Oil on Healing of Calvarial Defect. J Craniofac Surg 2020. [PMID: 32941220 DOI: 10.1097/SCS.0000000000007055] [Reference Citation Analysis]
34 Jiménez-Gastélum GR, Aguilar-Medina EM, Soto-Sainz E, Ramos-Payán R, Silva-Benítez EL. Antimicrobial Properties of Extracellular Matrix Scaffolds for Tissue Engineering. Biomed Res Int 2019;2019:9641456. [PMID: 31911931 DOI: 10.1155/2019/9641456] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
35 Cianciosi A, Costantini M, Bergamasco S, Testa S, Fornetti E, Jaroszewicz J, Baldi J, Latini A, Choińska E, Heljak M, Zoccali C, Cannata S, Święszkowski W, Diaz Lantada A, Gargioli C, Barbetta A. Engineering Human-Scale Artificial Bone Grafts for Treating Critical-Size Bone Defects. ACS Appl Bio Mater 2019;2:5077-92. [DOI: 10.1021/acsabm.9b00756] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
36 Pountos I, Georgouli T, Pneumaticos S, Giannoudis P. Fracture non-union: Can biomarkers predict outcome? Injury 2013;44:1725-32. [DOI: 10.1016/j.injury.2013.09.009] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 5.8] [Reference Citation Analysis]
37 Yu T, Liu Q, Jiang T, Wang X, Yang Y, Kang Y. Channeled β-TCP Scaffolds Promoted Vascularization and Bone Augmentation in Mandible of Beagle Dogs. Adv Funct Mater 2016;26:6719-27. [DOI: 10.1002/adfm.201602631] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
38 Cornejo A, Sahar DE, Stephenson SM, Chang S, Nguyen S, Guda T, Wenke JC, Vasquez A, Michalek JE, Sharma R, Krishnegowda NK, Wang HT. Effect of adipose tissue-derived osteogenic and endothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects. Tissue Eng Part A. 2012;18:1552-1561. [PMID: 22440012 DOI: 10.1089/ten.tea.2011.0515] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 3.7] [Reference Citation Analysis]
39 Park J, Bae S, Lee P, Lee W, Park Y, Kim H, Lee K, Kim I. Comparison of stem cells derived from periosteum and bone marrow of jaw bone and long bone in rabbit models. Tissue Eng Regen Med 2012;9:224-30. [DOI: 10.1007/s13770-012-0343-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
40 Durham E, Tronci G, Yang X, Wood D, Russell S. Nonwoven scaffolds for bone regeneration. Biomedical Textiles for Orthopaedic and Surgical Applications. Elsevier; 2015. pp. 45-65. [DOI: 10.1016/b978-1-78242-017-0.00003-9] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
41 Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part II: challenges on the evolution from single to multiple bioactive factor delivery. Tissue Eng Part B Rev 2013;19:327-52. [PMID: 23249320 DOI: 10.1089/ten.TEB.2012.0727] [Cited by in Crossref: 77] [Cited by in F6Publishing: 71] [Article Influence: 8.6] [Reference Citation Analysis]
42 Liu Y, Lim J, Teoh SH. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv. 2013;31:688-705. [PMID: 23142624 DOI: 10.1016/j.biotechadv.2012.10.003] [Cited by in Crossref: 273] [Cited by in F6Publishing: 220] [Article Influence: 27.3] [Reference Citation Analysis]
43 Oryan A, Alidadi S. Reconstruction of radial bone defect in rat by calcium silicate biomaterials. Life Sci 2018;201:45-53. [PMID: 29596919 DOI: 10.1016/j.lfs.2018.03.048] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
44 Li R, Sun J, Yang F, Sun Y, Wu X, Zhou Q, Yu Y, Bi W. Effect of GARP on osteogenic differentiation of bone marrow mesenchymal stem cells via the regulation of TGFβ1 in vitro. PeerJ 2019;7:e6993. [PMID: 31198639 DOI: 10.7717/peerj.6993] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
45 Tanase CE, Sartoris A, Popa MI, Verestiuc L, Unger RE, Kirkpatrick CJ. In vitro evaluation of biomimetic chitosan–calcium phosphate scaffolds with potential application in bone tissue engineering. Biomed Mater 2013;8:025002. [DOI: 10.1088/1748-6041/8/2/025002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
46 Du J, Zou Q, Zuo Y, Li Y. Cytocompatibility and osteogenesis evaluation of HA/GCPU composite as scaffolds for bone tissue engineering. Int J Surg 2014;12:404-7. [PMID: 24657710 DOI: 10.1016/j.ijsu.2014.03.005] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
47 Tilkin RG, Mahy JG, Régibeau N, Grandfils C, Lambert SD. Optimization of Synthesis Parameters for the Production of Biphasic Calcium Phosphate Ceramics via Wet Precipitation and Sol‐Gel Process. ChemistrySelect 2019;4:6634-41. [DOI: 10.1002/slct.201901175] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Sununliganon L, Peng L, Singhatanadgit W, Cheung LK. Osteogenic efficacy of bone marrow concentrate in rabbit maxillary sinus grafting. J Craniomaxillofac Surg. 2014;42:1753-1765. [PMID: 25052732 DOI: 10.1016/j.jcms.2014.06.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
49 Gothard D, Cheung K, Kanczler JM, Wilson DI, Oreffo RO. Regionally-derived cell populations and skeletal stem cells from human foetal femora exhibit specific osteochondral and multi-lineage differentiation capacity in vitro and ex vivo. Stem Cell Res Ther 2015;6:251. [PMID: 26684339 DOI: 10.1186/s13287-015-0247-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
50 Man Y, Wang P, Guo Y, Xiang L, Yang Y, Qu Y, Gong P, Deng L. Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres. Biomaterials. 2012;33:8802-8811. [PMID: 22981779 DOI: 10.1016/j.biomaterials.2012.08.054] [Cited by in Crossref: 102] [Cited by in F6Publishing: 92] [Article Influence: 10.2] [Reference Citation Analysis]
51 Li X, Wei J, Aifantis KE, Fan Y, Feng Q, Cui F, Watari F. Current investigations into magnetic nanoparticles for biomedical applications: Magnetic Nanoparticles for Biomedical Applications. J Biomed Mater Res 2016;104:1285-96. [DOI: 10.1002/jbm.a.35654] [Cited by in Crossref: 154] [Cited by in F6Publishing: 104] [Article Influence: 25.7] [Reference Citation Analysis]
52 Wu X, Gauntlett O, Zhang T, Suvarnapathaki S, McCarthy C, Wu B, Camci-Unal G. Eggshell Microparticle Reinforced Scaffolds for Regeneration of Critical Sized Cranial Defects. ACS Appl Mater Interfaces 2021;13:60921-32. [PMID: 34905346 DOI: 10.1021/acsami.1c19884] [Reference Citation Analysis]
53 Checchi M, Bertacchini J, Grisendi G, Smargiassi A, Sola A, Messori M, Palumbo C. Proposal of a Novel Natural Biomaterial, the Scleral Ossicle, for the Development of Vascularized Bone Tissue In Vitro. Biomedicines 2017;6:E3. [PMID: 29295590 DOI: 10.3390/biomedicines6010003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
54 Gil-albarova J, Vila M, Badiola-vargas J, Sánchez-salcedo S, Herrera A, Vallet-regi M. In vivo osteointegration of three-dimensional crosslinked gelatin-coated hydroxyapatite foams. Acta Biomaterialia 2012;8:3777-83. [DOI: 10.1016/j.actbio.2012.06.019] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
55 Shahabipour F, Ashammakhi N, Oskuee RK, Bonakdar S, Hoffman T, Shokrgozar MA, Khademhosseini A. Key components of engineering vascularized 3-dimensional bioprinted bone constructs. Translational Research 2020;216:57-76. [DOI: 10.1016/j.trsl.2019.08.010] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 17.0] [Reference Citation Analysis]
56 Jensen J, Kraft DC, Lysdahl H, Foldager CB, Chen M, Kristiansen AA, Rölfing JH, Bünger CE. Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Tissue Eng Part A 2015;21:729-39. [PMID: 25252795 DOI: 10.1089/ten.TEA.2014.0177] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
57 Watari S, Hayashi K, Wood JA, Russell P, Nealey PF, Murphy CJ, Genetos DC. Modulation of osteogenic differentiation in hMSCs cells by submicron topographically-patterned ridges and grooves. Biomaterials. 2012;33:128-136. [PMID: 21982295 DOI: 10.1016/j.biomaterials.2011.09.058] [Cited by in Crossref: 156] [Cited by in F6Publishing: 145] [Article Influence: 14.2] [Reference Citation Analysis]
58 Copuroglu C, Calori GM, Giannoudis PV. Fracture non-union: who is at risk? Injury. 2013;44:1379-1382. [PMID: 24035757 DOI: 10.1016/j.injury.2013.08.003] [Cited by in Crossref: 56] [Cited by in F6Publishing: 50] [Article Influence: 6.2] [Reference Citation Analysis]
59 Haugen HJ, Lyngstadaas SP, Rossi F, Perale G. Bone grafts: which is the ideal biomaterial? J Clin Periodontol 2019;46:92-102. [DOI: 10.1111/jcpe.13058] [Cited by in Crossref: 100] [Cited by in F6Publishing: 76] [Article Influence: 33.3] [Reference Citation Analysis]
60 Marew T, Birhanu G. Three dimensional printed nanostructure biomaterials for bone tissue engineering. Regen Ther 2021;18:102-11. [PMID: 34141834 DOI: 10.1016/j.reth.2021.05.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Ishijima M, Hirota M, Park W, Honda MJ, Tsukimura N, Isokawa K, Ishigami T, Ogawa T. Osteogenic cell sheets reinforced with photofunctionalized micro-thin titanium. J Biomater Appl 2015;29:1372-84. [PMID: 25604095 DOI: 10.1177/0885328214567693] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
62 de Oliveira GS, Miziara MN, Silva ER, Ferreira EL, Biulchi AP, Alves JB. Enhanced bone formation during healing process of tooth sockets filled with demineralized human dentine matrix. Aust Dent J 2013;58:326-32. [PMID: 23981214 DOI: 10.1111/adj.12088] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
63 Yu T, Pan H, Hu Y, Tao H, Wang K, Zhang C. Autologous platelet-rich plasma induces bone formation of tissue-engineered bone with bone marrow mesenchymal stem cells on beta-tricalcium phosphate ceramics. J Orthop Surg Res 2017;12:178. [PMID: 29157270 DOI: 10.1186/s13018-017-0665-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
64 Carlisle P, Marrs J, Gaviria L, Silliman DT, Decker JF, Brown Baer P, Guda T. Quantifying Vascular Changes Surrounding Bone Regeneration in a Porcine Mandibular Defect Using Computed Tomography. Tissue Eng Part C Methods 2019;25:721-31. [PMID: 31850839 DOI: 10.1089/ten.tec.2019.0205] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
65 Peña Fernández M, Black C, Dawson J, Gibbs D, Kanczler J, Oreffo ROC, Tozzi G. Exploratory Full-Field Strain Analysis of Regenerated Bone Tissue from Osteoinductive Biomaterials. Materials (Basel) 2020;13:E168. [PMID: 31906343 DOI: 10.3390/ma13010168] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
66 Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface. 2014;11:20140459. [PMID: 25401172 DOI: 10.1098/rsif.2014.0459] [Cited by in Crossref: 158] [Cited by in F6Publishing: 126] [Article Influence: 22.6] [Reference Citation Analysis]
67 Baumgartner W, Welti M, Hild N, Hess SC, Stark WJ, Bürgisser GM, Giovanoli P, Buschmann J. Tissue mechanics of piled critical size biomimetic and biominerizable nanocomposites: Formation of bioreactor-induced stem cell gradients under perfusion and compression. Journal of the Mechanical Behavior of Biomedical Materials 2015;47:124-34. [DOI: 10.1016/j.jmbbm.2015.03.022] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
68 Fan J, Guo M, Im CS, Pi-Anfruns J, Cui ZK, Kim S, Wu BM, Aghaloo TL, Lee M. Enhanced Mandibular Bone Repair by Combined Treatment of Bone Morphogenetic Protein 2 and Small-Molecule Phenamil. Tissue Eng Part A 2017;23:195-207. [PMID: 27771997 DOI: 10.1089/ten.TEA.2016.0308] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
69 Ruan S, Yan L, Deng J, Huang W, Jiang D. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. International Orthopaedics (SICOT) 2017;41:1899-908. [DOI: 10.1007/s00264-017-3522-2] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
70 Lohmann P, Willuweit A, Neffe A, Geisler S, Gebauer T, Beer S, Coenen H, Fischer H, Hermanns-sachweh B, Lendlein A, Shah N, Kiessling F, Langen K. Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect. Biomaterials 2017;113:158-69. [DOI: 10.1016/j.biomaterials.2016.10.039] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 8.4] [Reference Citation Analysis]
71 Giannoudis PV, Calori GM, Begue T, Schmidmaier G. Bone regeneration strategies: Current trends but what the future holds? Injury 2013;44:S1-2. [DOI: 10.1016/s0020-1383(13)70002-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 5] [Article Influence: 3.1] [Reference Citation Analysis]
72 Mittwede PN, Gottardi R, Alexander PG, Tarkin IS, Tuan RS. Clinical Applications of Bone Tissue Engineering in Orthopedic Trauma. Curr Pathobiol Rep 2018;6:99-108. [DOI: 10.1007/s40139-018-0166-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
73 Yuan J, Zhen P, Zhao H, Chen K, Li X, Gao M, Zhou J, Ma X. The preliminary performance study of the 3D printing of a tricalcium phosphate scaffold for the loading of sustained release anti-tuberculosis drugs. J Mater Sci 2015;50:2138-47. [DOI: 10.1007/s10853-014-8776-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
74 Rodrigues JR, Alves NM, Mano JF. Nacre-inspired nanocomposites produced using layer-by-layer assembly: Design strategies and biomedical applications. Materials Science and Engineering: C 2017;76:1263-73. [DOI: 10.1016/j.msec.2017.02.043] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 3.6] [Reference Citation Analysis]
75 Neßler KHL, Henstock JR, El Haj AJ, Waters SL, Whiteley JP, Osborne JM. The influence of hydrostatic pressure on tissue engineered bone development. J Theor Biol 2016;394:149-59. [PMID: 26796221 DOI: 10.1016/j.jtbi.2015.12.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
76 Pneumaticos SG, Panteli M, Triantafyllopoulos GK, Papakostidis C, Giannoudis PV. Management and outcome of diaphyseal aseptic non-unions of the lower limb: A systematic review. The Surgeon 2014;12:166-75. [DOI: 10.1016/j.surge.2013.10.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
77 Vellayappan MV, Jaganathan SK, Supriyanto E. Review: unraveling the less explored flocking technology for tissue engineering scaffolds. RSC Adv 2015;5:73225-40. [DOI: 10.1039/c5ra11937e] [Cited by in Crossref: 7] [Article Influence: 1.0] [Reference Citation Analysis]
78 Yao Q, Sandhurst ES, Liu Y, Sun H. BBP-Functionalized Biomimetic Nanofibrous Scaffold Can Capture BMP2 and Promote Osteogenic Differentiation. J Mater Chem B 2017;5:5196-205. [PMID: 29250330 DOI: 10.1039/C7TB00744B] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
79 Zhang B, Guo L, Chen H, Ventikos Y, Narayan RJ, Huang J. Finite element evaluations of the mechanical properties of polycaprolactone/hydroxyapatite scaffolds by direct ink writing: Effects of pore geometry. Journal of the Mechanical Behavior of Biomedical Materials 2020;104:103665. [DOI: 10.1016/j.jmbbm.2020.103665] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
80 Dlaska CE, Andersson G, Brittberg M, Suedkamp NP, Raschke MJ, Schuetz MA. Clinical Translation in Tissue Engineering—The Surgeon’s View. Curr Mol Bio Rep 2015;1:61-70. [DOI: 10.1007/s40610-015-0013-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
81 Mehrabani D, Khodakaram-Tafti A, Shaterzadeh-Yazdi H, Zamiri B, Omidi M. Comparison of the regenerative effect of adipose-derived stem cells, fibrin glue scaffold, and autologous bone graft in experimental mandibular defect in rabbit. Dent Traumatol 2018;34:413-20. [PMID: 30187637 DOI: 10.1111/edt.12435] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
82 Luca RE, Giuliani A, Mănescu A, Heredea R, Hoinoiu B, Constantin GD, Duma VF, Todea CD. Osteogenic Potential of Bovine Bone Graft in Combination with Laser Photobiomodulation: An Ex Vivo Demonstrative Study in Wistar Rats by Cross-Linked Studies Based on Synchrotron Microtomography and Histology. Int J Mol Sci 2020;21:E778. [PMID: 31991756 DOI: 10.3390/ijms21030778] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
83 Yang X, Li Y, Huang Q, Yang J, Shen B, Pei F. Evaluation of a biodegradable graft substitute in rabbit bone defect model. Indian J Orthop 2012;46:266-73. [PMID: 22719111 DOI: 10.4103/0019-5413.96371] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
84 Panteli M, Pountos I, Jones E, Giannoudis PV. Biological and molecular profile of fracture non-union tissue: current insights. J Cell Mol Med 2015;19:685-713. [PMID: 25726940 DOI: 10.1111/jcmm.12532] [Cited by in Crossref: 57] [Cited by in F6Publishing: 54] [Article Influence: 8.1] [Reference Citation Analysis]
85 Giovanini AF, Deliberador TM, Tannuri Nemeth JE, Crivellaro VR, Portela GS, de Oliveira Filho MA, de Araujo MR, Zielak JC, Gonzaga CC. Leukocyte-platelet-rich plasma (L-PRP) impairs the osteoconductive capacity of the autograft associated to changes in the immunolocalization of TGF-β1 and its co-expression with Wnt10b and CD34 cells. Journal of Cranio-Maxillofacial Surgery 2013;41:e180-6. [DOI: 10.1016/j.jcms.2013.01.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]