BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nasser NJ, Friedman A, Friedman M, Moor E, Mosheiff R. Guided bone regeneration in the treatment of segmental diaphyseal defects: A comparison between resorbable and non-resorbable membranes. Injury 2005;36:1460-6. [DOI: 10.1016/j.injury.2005.05.015] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 1.3] [Reference Citation Analysis]
Number Citing Articles
1 Harris JS, Bemenderfer TB, Wessel AR, Kacena MA. A review of mouse critical size defect models in weight bearing bones. Bone 2013;55:241-7. [PMID: 23416847 DOI: 10.1016/j.bone.2013.02.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
2 Pape H, Pufe T. Bone defects and nonunions—What role does vascularity play in filling the gap? Injury 2010;41:553-4. [DOI: 10.1016/j.injury.2010.04.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
3 Hong H, Liu C, Wu W. Preparation and characterization of chitosan/PEG/gelatin composites for tissue engineering. J Appl Polym Sci 2009;114:1220-5. [DOI: 10.1002/app.30619] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
4 Qu Y, Wang P, Man Y, Li Y, Zuo Y, Li J. Preliminary biocompatible evaluation of nano-hydroxyapatite/polyamide 66 composite porous membrane. Int J Nanomedicine 2010;5:429-35. [PMID: 20957164 DOI: 10.2147/ijn.s10710] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 1.1] [Reference Citation Analysis]
5 Grin A, Sasson Y, Beyth S, Mosheiff R, Rachmilewitz J, Friedman M. In vitro study of a novel polymeric mesenchymal stem-cell coated membrane. Journal of Drug Delivery Science and Technology 2009;19:241-6. [DOI: 10.1016/s1773-2247(09)50047-0] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
6 Ezirganli S, Kazancioglu HO, Mihmanli A, Sharifov R, Aydin MS. Effects of different biomaterials on augmented bone volume resorptions. Clin Oral Impl Res 2015;26:1482-8. [DOI: 10.1111/clr.12495] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
7 Giardino R, Nicoli Aldini N, Fini M, Tanzi MC, Faré S, Draghi L, Carpi A, Nicolini A, Giavaresi G. Bioabsorbable scaffold for in situ bone regeneration. Biomed Pharmacother 2006;60:386-92. [PMID: 16930938 DOI: 10.1016/j.biopha.2006.07.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
8 Li J, Zuo Y, Man Y, Mo A, Huang C, Liu M, Jansen JA, Li Y. Fabrication and biocompatibility of an antimicrobial composite membrane with an asymmetric porous structure. J Biomater Sci Polym Ed 2012;23:81-96. [PMID: 21156105 DOI: 10.1163/092050610X543159] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
9 Kirmayer D, Grin A, Gefter Shenderovich J, Friedman M, Rachmilewitz J, Mosheiff R, Kenett R, Khoury A. Guided Bone Regeneration with Ammoniomethacrylate-Based Barrier Membranes in a Radial Defect Model. Biomed Res Int 2020;2020:5905740. [PMID: 33150177 DOI: 10.1155/2020/5905740] [Reference Citation Analysis]
10 Genecov DG, Kremer M, Agarwal R, Salyer KE, Barcelo CR, Aberman HM, Opperman LA. Norian craniofacial repair system: compatibility with resorbable and nonresorbable plating materials. Plast Reconstr Surg 2007;120:1487-95. [PMID: 18040178 DOI: 10.1097/01.prs.0000282034.07517.cc] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
11 Costa-pinto A, Santos TC, Neves NM, Reis RL. Testing Natural Biomaterials in Animal Models. In: Neves NM, Reis RL, editors. Biomaterials from Nature for Advanced Devices and Therapies. Hoboken: John Wiley & Sons, Inc.; 2016. pp. 562-79. [DOI: 10.1002/9781119126218.ch30] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
12 Li J, Zuo Y, Cheng X, Yang W, Wang H, Li Y. Preparation and characterization of nano-hydroxyapatite/polyamide 66 composite GBR membrane with asymmetric porous structure. J Mater Sci: Mater Med 2009;20:1031-8. [DOI: 10.1007/s10856-008-3664-2] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
13 Cortez P, Shirosaki Y, Botelho C, Simões M, Gartner F, da Costa RG, Tsuru K, Hayakawa S, Osaka A, Lopes M, Santos JD, Maurício AC. Hybrid Chitosan Membranes Tested in Sheep for Guided Tissue Regeneration. KEM 2007;361-363:1265-8. [DOI: 10.4028/www.scientific.net/kem.361-363.1265] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
14 Schroeder JE, Mosheiff R. Tissue engineering approaches for bone repair: Concepts and evidence. Injury 2011;42:609-13. [DOI: 10.1016/j.injury.2011.03.029] [Cited by in Crossref: 97] [Cited by in F6Publishing: 81] [Article Influence: 8.8] [Reference Citation Analysis]
15 Domalik-pyzik P, Morawska-chochół A, Chłopek J, Rajzer I, Wrona A, Menaszek E, Ambroziak M. Polylactide/polycaprolactone asymmetric membranes for guided bone regeneration. e-Polymers 2016;16:351-8. [DOI: 10.1515/epoly-2016-0138] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
16 Li J, Man Y, Zuo Y, Zhang L, Huang C, Liu M, Li Y. In Vitro and In Vivo Evaluation of a nHA/PA66 Composite Membrane for Guided Bone Regeneration. J Biomater Sci Polym Ed 2011;22:263-75. [PMID: 20557712 DOI: 10.1163/092050609X12602753096279] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
17 Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis PV. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med 2012;10:81. [PMID: 22834465 DOI: 10.1186/1741-7015-10-81] [Cited by in Crossref: 162] [Cited by in F6Publishing: 146] [Article Influence: 16.2] [Reference Citation Analysis]
18 Fu YC, Nie H, Ho ML, Wang CK, Wang CH. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol Bioeng 2008;99:996-1006. [PMID: 17879301 DOI: 10.1002/bit.21648] [Cited by in Crossref: 138] [Cited by in F6Publishing: 119] [Article Influence: 9.9] [Reference Citation Analysis]
19 Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 2011;32:65-74. [PMID: 20864165 DOI: 10.1016/j.biomaterials.2010.08.074] [Cited by in Crossref: 350] [Cited by in F6Publishing: 292] [Article Influence: 29.2] [Reference Citation Analysis]
20 Caridade SG, Mano JF. * Engineering Membranes for Bone Regeneration. Tissue Eng Part A 2017;23:1502-33. [PMID: 28903686 DOI: 10.1089/ten.tea.2017.0094] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
21 Ali IH, Khalil IA, El-sherbiny IM. Phenytoin/sildenafil loaded poly(lactic acid) bilayer nanofibrous scaffolds for efficient orthopedics regeneration. International Journal of Biological Macromolecules 2019;136:154-64. [DOI: 10.1016/j.ijbiomac.2019.06.048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
22 Costa-Pinto AR, Reis RL, Neves NM. Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev 2011;17:331-47. [PMID: 21810029 DOI: 10.1089/ten.teb.2010.0704] [Cited by in Crossref: 216] [Cited by in F6Publishing: 169] [Article Influence: 19.6] [Reference Citation Analysis]