BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shi L, Zheng L, Zhao C, Huang J, Jin Q, Wang X. Effects of deacidification methods on high free fatty acid containing oils obtained from sea buckthron (Hippophaë rhamnoides L.) berry. Industrial Crops and Products 2018;124:797-805. [DOI: 10.1016/j.indcrop.2018.08.059] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Wang B, Sun S, Yao N, Chu C. A novel method for simultaneous degumming and deacidification of corn oil by miscella refining in one step. LWT 2021;137:110480. [DOI: 10.1016/j.lwt.2020.110480] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
2 Nor Shafizah I, Irmawati R, Omar H, Yahaya M, Alia Aina A. Removal of free fatty acid (FFA) in crude palm oil (CPO) using potassium oxide/dolomite as an adsorbent: Optimization by Taguchi method. Food Chem 2022;373:131668. [PMID: 34848088 DOI: 10.1016/j.foodchem.2021.131668] [Reference Citation Analysis]
3 Chen W, Xu L, Zhong N. Encapsulation of CALB by nucleotide/metal ions coordination nanoparticles: highly selective catalysis of esterification while poor performance in glycerolysis reaction. J Sci Food Agric 2021. [PMID: 34460944 DOI: 10.1002/jsfa.11516] [Reference Citation Analysis]
4 Yang T, Zhang Y, Wang J, Huang F, Zheng M. Magnetic Switchable Pickering Interfacial Biocatalysis: One-Pot Cascade Synthesis of Phytosterol Esters from High-Acid Value Oil. ACS Sustainable Chem Eng 2021;9:12070-8. [DOI: 10.1021/acssuschemeng.1c02448] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
5 Dąbrowski G, Czaplicki S, Szustak M, Cichońska E, Gendaszewska-Darmach E, Konopka I. Composition of flesh lipids and oleosome yield optimization of selected sea buckthorn (Hippophae rhamnoides L.) cultivars grown in Poland. Food Chem 2022;369:130921. [PMID: 34461512 DOI: 10.1016/j.foodchem.2021.130921] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
6 Serra JL, Rodrigues AMDC, de Freitas RA, Meirelles AJDA, Darnet SH, Silva LHMD. Alternative sources of oils and fats from Amazonian plants: Fatty acids, methyl tocols, total carotenoids and chemical composition. Food Research International 2019;116:12-9. [DOI: 10.1016/j.foodres.2018.12.028] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
7 Noriega M, Figueroa L, Narváez P. Fatty Acid Solvent Extraction from Palm Oil using Liquid-Liquid Film Contactor: Mathematical model Including Mass Transfer Effects. Food and Bioproducts Processing 2022. [DOI: 10.1016/j.fbp.2022.02.004] [Reference Citation Analysis]
8 Teng XN, Wang SC, Zeb L, Xiu ZL. Effects of carboxymethyl chitosan adsorption on bioactive components of Antarctic krill oil. Food Chem 2022;388:132995. [PMID: 35453014 DOI: 10.1016/j.foodchem.2022.132995] [Reference Citation Analysis]
9 Feng K, Huang Z, Peng B, Dai W, Li Y, Zhu X, Chen Y, Tong X, Lan Y, Cao Y. Immobilization of Aspergillus niger lipase onto a novel macroporous acrylic resin: Stable and recyclable biocatalysis for deacidification of high-acid soy sauce residue oil. Bioresour Technol 2020;298:122553. [PMID: 31846852 DOI: 10.1016/j.biortech.2019.122553] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]