1 |
Al-atash YAA, Majnis MF. CFD simulation of chitosan microsphere formation in droplet-based microfluidics. THE PHYSICS OF SURFACES: Aspects of the Kinetics and Dynamics of Surface
Reaction 2023. [DOI: 10.1063/5.0114298] [Reference Citation Analysis]
|
2 |
Gao Y, Ma Q. Bacterial infection microenvironment‐responsive porous microspheres by microfluidics for promoting anti‐infective therapy. Smart Medicine 2022. [DOI: 10.1002/smmd.20220012] [Reference Citation Analysis]
|
3 |
Abrishamkar A, Nilghaz A, Saadatmand M, Naeimirad M, deMello AJ. Microfluidic-assisted fiber production: Potentials, limitations, and prospects. Biomicrofluidics 2022;16:061504. [PMID: 36406340 DOI: 10.1063/5.0129108] [Reference Citation Analysis]
|
4 |
Shetty K, Yasaswi S, Dutt S, Yadav KS. Multifunctional nanocarriers for delivering siRNA and miRNA in glioblastoma therapy: advances in nanobiotechnology-based cancer therapy. 3 Biotech 2022;12. [DOI: 10.1007/s13205-022-03365-2] [Reference Citation Analysis]
|
5 |
Shen P, Jia Y, Shi S, Sun J, Han X. Analytical and biomedical applications of microfluidics in traditional Chinese medicine research. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116851] [Reference Citation Analysis]
|
6 |
Chen X, Sun T, Wei Z, Chen Z, Wang H, Huang Q, Fukuda T, Shi Q. A clamp-free micro-stretching system for evaluating the viscoelastic response of cell-laden microfibers. Biosensors and Bioelectronics 2022;214:114517. [DOI: 10.1016/j.bios.2022.114517] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
7 |
Yang Q, Yang J, Sun S, Zhao J, Liang S, Feng Y, Liu M, Zhang J. Rhodojaponin III-Loaded Chitosan Derivatives-Modified Solid Lipid Nanoparticles for Multimodal Antinociceptive Effects in vivo. Int J Nanomedicine 2022;17:3633-53. [PMID: 35996527 DOI: 10.2147/IJN.S362443] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
Saeedi M, Vahidi O, Moghbeli MR, Ahmadi S, Asadnia M, Akhavan O, Seidi F, Rabiee M, Saeb MR, Webster TJ, Varma RS, Sharifi E, Zarrabi A, Rabiee N. Customizing nano-chitosan for sustainable drug delivery. J Control Release 2022;350:175-92. [PMID: 35914615 DOI: 10.1016/j.jconrel.2022.07.038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Shi H, Wu L, Luo Y, Yu F, Li H. A facile method to prepare cellulose fiber-based food packaging papers with improved mechanical strength, enhanced barrier, and antibacterial properties. Food Bioscience 2022. [DOI: 10.1016/j.fbio.2022.101729] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
10 |
Hao X, Du T, He H, Yang F, Wang Y, Liu G, Wang Y. Microfluidic Particle Reactors: From Interface Characteristics to Cells and Drugs Related Biomedical Applications. Adv Materials Inter 2022;9:2102184. [DOI: 10.1002/admi.202102184] [Reference Citation Analysis]
|
11 |
Niculescu AG, Grumezescu AM. Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. Nanomaterials (Basel) 2022;12:186. [PMID: 35055206 DOI: 10.3390/nano12020186] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 28.0] [Reference Citation Analysis]
|
12 |
Kundu B, Caballero D, Abreu CM, Reis RL, Kundu SC. The Tumor Microenvironment: An Introduction to the Development of Microfluidic Devices. Microfluidics and Biosensors in Cancer Research 2022. [DOI: 10.1007/978-3-031-04039-9_5] [Reference Citation Analysis]
|
13 |
Dunne A, Francis W, Delaney C, Florea L, Diamond D, Ramadan M. Stimuli-Controlled Fluid Control and Microvehicle Movement in Microfluidic Channels. Encyclopedia of Smart Materials 2022. [DOI: 10.1016/b978-0-12-815732-9.00143-1] [Reference Citation Analysis]
|
14 |
Zhao W, Zhang Y, Liu L, Gao Y, Sun W, Sun Y, Ma Q. Microfluidic-based functional materials: new prospects for wound healing and beyond. J Mater Chem B 2022;10:8357-8374. [DOI: 10.1039/d2tb01464e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Trinh KTL, Le NXT, Lee NY. Microfluidic-based fabrication of alginate microparticles for protein delivery and its application in the in vitro chondrogenesis of mesenchymal stem cells. Journal of Drug Delivery Science and Technology 2021;66:102735. [DOI: 10.1016/j.jddst.2021.102735] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Gao Y, Ma Q, Cao J, Shi Y, Wang J, Ma H, Sun Y, Song Y. Bifunctional alginate/chitosan stabilized perfluorohexane nanodroplets as smart vehicles for ultrasound and pH responsive delivery of anticancer agents. Int J Biol Macromol 2021;191:1068-78. [PMID: 34600955 DOI: 10.1016/j.ijbiomac.2021.09.166] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
17 |
Mikušová V, Mikuš P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int J Mol Sci 2021;22:9652. [PMID: 34502560 DOI: 10.3390/ijms22179652] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
|
18 |
Liu L, Ma Q, Cao J, Gao Y, Han S, Liang Y, Zhang T, Song Y, Sun Y. Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nano 2021;12. [DOI: 10.1186/s12645-021-00087-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
|
19 |
Amiryaghoubi N, Fathi M, Adibkia K, Barar J, Omidian H, Omidi Y. Chitosan-Based Biomaterials: Their Interaction with Natural and Synthetic Materials for Cartilage, Bone, Cardiac, Vascular, and Neural Tissue Engineering. Engineering Materials for Stem Cell Regeneration 2021. [DOI: 10.1007/978-981-16-4420-7_22] [Reference Citation Analysis]
|