BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gou M, Zheng L, Peng X, Men K, Zheng X, Zeng S, Guo G, Luo F, Zhao X, Chen L, Wei Y, Qian Z. Poly(ɛ-caprolactone)–poly(ethylene glycol)–poly(ɛ-caprolactone) (PCL–PEG–PCL) nanoparticles for honokiol delivery in vitro. International Journal of Pharmaceutics 2009;375:170-6. [DOI: 10.1016/j.ijpharm.2009.04.007] [Cited by in Crossref: 75] [Cited by in F6Publishing: 69] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Zhang S, Wang L, Yang S, Gong Y. Improved biocompatibility of phosphorylcholine end-capped poly(butylene succinate). Sci China Chem 2013;56:174-80. [DOI: 10.1007/s11426-012-4759-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
2 Noormohammadi F, Nourany M, Mir Mohamad Sadeghi G, Wang P, Shahsavarani H. The role of cellulose nanowhiskers in controlling phase segregation, crystallization and thermal stimuli responsiveness in PCL-PEGx-PCL block copolymer-based PU for human tissue engineering applications. Carbohydrate Polymers 2021;252:117219. [DOI: 10.1016/j.carbpol.2020.117219] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
3 Guo Q, Kong F, Ma C, Cao H. Preparation of doxorubicin loaded Poly(ethylene glycol)-Poly(ε-caprolactone)-hydroxyapatite fibres as drug delivery systems. Materials Technology 2020;35:203-11. [DOI: 10.1080/10667857.2019.1674477] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
4 Suksiriworapong J, Sripha K, Kreuter J, Junyaprasert VB. Functionalized (poly(ɛ-caprolactone))2-poly(ethylene glycol) nanoparticles with grafting nicotinic acid as drug carriers. International Journal of Pharmaceutics 2012;423:562-70. [DOI: 10.1016/j.ijpharm.2011.11.033] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
5 Gupta M, Chashoo G, Sharma PR, Saxena AK, Gupta PN, Agrawal GP, Vyas SP. Dual targeted polymeric nanoparticles based on tumor endothelium and tumor cells for enhanced antitumor drug delivery. Mol Pharm 2014;11:697-715. [PMID: 24512060 DOI: 10.1021/mp400404p] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
6 Mogoşanu GD, Grumezescu AM, Bejenaru C, Bejenaru LE. Polymeric protective agents for nanoparticles in drug delivery and targeting. Int J Pharm 2016;510:419-29. [PMID: 26972379 DOI: 10.1016/j.ijpharm.2016.03.014] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 6.3] [Reference Citation Analysis]
7 Guo Y, Zhao Y, Wang T, Zhao S, Qiu H, Han M, Wang X. Honokiol nanoparticles stabilized by oligoethylene glycols codendrimer: in vitro and in vivo investigations. J Mater Chem B 2017;5:697-706. [DOI: 10.1039/c6tb02416e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Yan X, Shi Y, Jiang Q, Ping G, Deng Z. Design of amphiphilic PCL-PEG-PCL block copolymers as vehicles of Ginkgolide B and their brain-targeting studies. Journal of Biomaterials Science, Polymer Edition 2017;28:1497-510. [DOI: 10.1080/09205063.2017.1332470] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
9 Duan J, Liu C, Liang X, Li X, Chen Y, Chen Z, Wang X, Kong D, Li Y, Yang J. Protein delivery nanosystem of six-arm copolymer poly(ε-caprolactone)-poly(ethylene glycol) for long-term sustained release. Int J Nanomedicine 2018;13:2743-54. [PMID: 29780245 DOI: 10.2147/IJN.S161006] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
10 Gökçe Kocabay Ö, İsmail O. Preparation and optimization of biodegradable self-assembled PCL-PEG-PCL nano-sized micelles for drug delivery systems. International Journal of Polymeric Materials and Polymeric Biomaterials 2021;70:328-37. [DOI: 10.1080/00914037.2020.1713784] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
11 Yang B, Ni X, Chen L, Zhang H, Ren P, Feng Y, Chen Y, Fu S, Wu J. Honokiol-loaded polymeric nanoparticles: an active targeting drug delivery system for the treatment of nasopharyngeal carcinoma. Drug Deliv 2017;24:660-9. [PMID: 28368206 DOI: 10.1080/10717544.2017.1303854] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
12 Korzhikov-Vlakh V, Krylova M, Sinitsyna E, Ivankova E, Averianov I, Tennikova TB. Hydrogel Layers on the Surface of Polyester-Based Materials for Improvement of Their Biointeractions and Controlled Release of Proteins. Polymers (Basel) 2016;8:E418. [PMID: 30974696 DOI: 10.3390/polym8120418] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 2.2] [Reference Citation Analysis]
13 Khodaverdi E, Golmohammadian A, Mohajeri SA, Zohuri G, Mirzazadeh Tekie FS, Hadizadeh F. Biodegradable In Situ Gel-Forming Controlled Drug Delivery System Based on Thermosensitive Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone) Hydrogel. ISRN Pharm 2012;2012:976879. [PMID: 23227366 DOI: 10.5402/2012/976879] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
14 Mattheolabakis G, Rigas B, Constantinides PP. Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine (Lond) 2012;7:1577-90. [PMID: 23148540 DOI: 10.2217/nnm.12.128] [Cited by in Crossref: 76] [Cited by in F6Publishing: 75] [Article Influence: 8.4] [Reference Citation Analysis]
15 Zubair H, Azim S, Ahmad A, Khan MA, Patel GK, Singh S, Singh AP. Cancer Chemoprevention by Phytochemicals: Nature's Healing Touch. Molecules 2017;22:E395. [PMID: 28273819 DOI: 10.3390/molecules22030395] [Cited by in Crossref: 62] [Cited by in F6Publishing: 47] [Article Influence: 12.4] [Reference Citation Analysis]
16 Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J Control Release 2012;158:15-33. [PMID: 21963774 DOI: 10.1016/j.jconrel.2011.09.064] [Cited by in Crossref: 629] [Cited by in F6Publishing: 496] [Article Influence: 57.2] [Reference Citation Analysis]
17 Lv Z, Chang L, Long X, Liu J, Xiang Y, Liu J, Liu J, Deng H, Deng L, Dong A. Thermosensitive in situ hydrogel based on the hybrid of hyaluronic acid and modified PCL/PEG triblock copolymer. Carbohydrate Polymers 2014;108:26-33. [DOI: 10.1016/j.carbpol.2014.03.016] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
18 Gao X, Wang B, Wei X, Rao W, Ai F, Zhao F, Men K, Yang B, Liu X, Huang M, Gou M, Qian Z, Huang N, Wei Y. Preparation, characterization and application of star-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer. Int J Nanomedicine 2013;8:971-82. [PMID: 23493403 DOI: 10.2147/IJN.S39532] [Cited by in Crossref: 52] [Cited by in F6Publishing: 15] [Article Influence: 5.8] [Reference Citation Analysis]
19 Capasso Palmiero U, Sponchioni M, Manfredini N, Maraldi M, Moscatelli D. Strategies to combine ROP with ATRP or RAFT polymerization for the synthesis of biodegradable polymeric nanoparticles for biomedical applications. Polym Chem 2018;9:4084-99. [DOI: 10.1039/c8py00649k] [Cited by in Crossref: 32] [Article Influence: 8.0] [Reference Citation Analysis]
20 Wilson DR, Zhang N, Silvers AL, Forstner MB, Bader RA. Synthesis and evaluation of cyclosporine A-loaded polysialic acid–polycaprolactone micelles for rheumatoid arthritis. European Journal of Pharmaceutical Sciences 2014;51:146-56. [DOI: 10.1016/j.ejps.2013.09.013] [Cited by in Crossref: 46] [Cited by in F6Publishing: 35] [Article Influence: 5.8] [Reference Citation Analysis]
21 Torchilin V. PEGylated Pharmaceutical Nanocarriers. In: Wright JC, Burgess DJ, editors. Long Acting Injections and Implants. Boston: Springer US; 2012. pp. 263-93. [DOI: 10.1007/978-1-4614-0554-2_14] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
22 Taghipour-sabzevar V, Sharifi T, Moghaddam MM. Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Therapeutic Delivery 2019;10:527-50. [DOI: 10.4155/tde-2019-0044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 4.7] [Reference Citation Analysis]
23 Jalilzadeh N, Samadi N, Salehi R, Dehghan G, Iranshahi M, Dadpour MR, Hamishehkar H. Novel nano-vehicle for delivery and efficiency of anticancer auraptene against colon cancer cells. Sci Rep 2020;10:1606. [PMID: 32005894 DOI: 10.1038/s41598-020-58527-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
24 Zhang L, Chen Z, Wang H, Wu S, Zhao K, Sun H, Kong D, Wang C, Leng X, Zhu D. Preparation and evaluation of PCL–PEG–PCL polymeric nanoparticles for doxorubicin delivery against breast cancer. RSC Adv 2016;6:54727-37. [DOI: 10.1039/c6ra04687h] [Cited by in Crossref: 18] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
25 Song XL, Ju RJ, Xiao Y, Wang X, Liu S, Fu M, Liu JJ, Gu LY, Li XT, Cheng L. Application of multifunctional targeting epirubicin liposomes in the treatment of non-small-cell lung cancer. Int J Nanomedicine 2017;12:7433-51. [PMID: 29066893 DOI: 10.2147/IJN.S141787] [Cited by in Crossref: 30] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
26 Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies.Drug Deliv Transl Res. 2020;10:354-367. [PMID: 31788762 DOI: 10.1007/s13346-019-00691-6] [Cited by in Crossref: 55] [Cited by in F6Publishing: 46] [Article Influence: 27.5] [Reference Citation Analysis]
27 Wang Y, Chen L, Tan L, Zhao Q, Luo F, Wei Y, Qian Z. PEG-PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy. Biomaterials 2014;35:6972-85. [PMID: 24836952 DOI: 10.1016/j.biomaterials.2014.04.099] [Cited by in Crossref: 105] [Cited by in F6Publishing: 90] [Article Influence: 13.1] [Reference Citation Analysis]
28 Huang J, Yu X, Zhou Y, Zhang R, Song Q, Wang Q, Li X. Directing the nanoparticle formation by the combination with small molecular assembly and polymeric assembly for topical suppression of ocular inflammation. Int J Pharm 2018;551:223-31. [PMID: 30213683 DOI: 10.1016/j.ijpharm.2018.09.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
29 Molina BG, Cianga L, Bendrea A, Cianga I, Alemán C, Armelin E. An amphiphilic, heterografted polythiophene copolymer containing biocompatible/biodegradable side chains for use as an (electro)active surface in biomedical applications. Polym Chem 2019;10:5010-22. [DOI: 10.1039/c9py00926d] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
30 Wang Z, Li M, Yu B, Cao L, Yang Q, Su J. Nanocalcium-deficient hydroxyapatite-poly (e-caprolactone)-polyethylene glycol-poly (e-caprolactone) composite scaffolds. Int J Nanomedicine 2012;7:3123-31. [PMID: 22848159 DOI: 10.2147/IJN.S31162] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 0.2] [Reference Citation Analysis]
31 Zijah V, Salehi R, Aghazadeh M, Samiei M, Alizadeh E, Davaran S. Towards optimization of odonto/osteogenic bioengineering: in vitro comparison of simvastatin, sodium fluoride, melanocyte-stimulating hormone. In Vitro Cell Dev Biol -Animal 2017;53:502-12. [DOI: 10.1007/s11626-017-0141-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
32 Gandhi NS, Tekade RK, Chougule MB. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J Control Release 2014;194:238-56. [PMID: 25204288 DOI: 10.1016/j.jconrel.2014.09.001] [Cited by in Crossref: 210] [Cited by in F6Publishing: 211] [Article Influence: 26.3] [Reference Citation Analysis]
33 Li Z, Tan BH. Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications. Materials Science and Engineering: C 2014;45:620-34. [DOI: 10.1016/j.msec.2014.06.003] [Cited by in Crossref: 132] [Cited by in F6Publishing: 103] [Article Influence: 16.5] [Reference Citation Analysis]
34 Xu X, Tao J, Wang S, Yang L, Zhang J, Zhang J, Liu H, Cheng H, Xu J, Gou M, Wei Y. 3D printing of nerve conduits with nanoparticle-encapsulated RGFP966. Applied Materials Today 2019;16:247-56. [DOI: 10.1016/j.apmt.2019.05.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
35 Hu J, Fu S, Peng Q, Han Y, Xie J, Zan N, Chen Y, Fan J. Paclitaxel-loaded polymeric nanoparticles combined with chronomodulated chemotherapy on lung cancer: In vitro and in vivo evaluation. International Journal of Pharmaceutics 2017;516:313-22. [DOI: 10.1016/j.ijpharm.2016.11.047] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 6.6] [Reference Citation Analysis]
36 Pazoki-Toroudi H, Amani H, Ajami M, Nabavi SF, Braidy N, Kasi PD, Nabavi SM. Targeting mTOR signaling by polyphenols: A new therapeutic target for ageing. Ageing Res Rev 2016;31:55-66. [PMID: 27453478 DOI: 10.1016/j.arr.2016.07.004] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 6.7] [Reference Citation Analysis]
37 Wang Y, Wang C, Gong C, Wang Y, Guo G, Luo F, Qian Z. Polysorbate 80 coated poly (ɛ-caprolactone)-poly (ethylene glycol)-poly (ɛ-caprolactone) micelles for paclitaxel delivery. Int J Pharm 2012;434:1-8. [PMID: 22609127 DOI: 10.1016/j.ijpharm.2012.05.015] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 4.1] [Reference Citation Analysis]
38 Song Z, Sun J, Deng P, Zhou F, Xu H, Wen Y, Teng F, Ge D, Feng R. Oligochitosan-pluronic 127 conjugate for delivery of honokiol. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:740-50. [DOI: 10.1080/21691401.2018.1434785] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
39 Liao J, Jia Y, Wang B, Shi K, Qian Z. Injectable Hybrid Poly(ε-caprolactone)- b -poly(ethylene glycol)- b -poly(ε-caprolactone) Porous Microspheres/Alginate Hydrogel Cross-linked by Calcium Gluconate Crystals Deposited in the Pores of Microspheres Improved Skin Wound Healing. ACS Biomater Sci Eng 2018;4:1029-36. [DOI: 10.1021/acsbiomaterials.7b00860] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
40 Luo W, Yan M, Tao B, Shi S, Chen B. Solubility of succinic acid, glutaric acid and adipic acid in propionic acid + ε-caprolactone + water mixtures: Experimental measurement and thermodynamic modeling. The Journal of Chemical Thermodynamics 2019;138:332-44. [DOI: 10.1016/j.jct.2019.06.033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
41 Gou P, Zhu W, Shen Z. Synthesis, Self-Assembly, and Drug-Loading Capacity of Well-Defined Cyclodextrin-Centered Drug-Conjugated Amphiphilic A 14 B 7 Miktoarm Star Copolymers Based on Poly(ε-caprolactone) and Poly(ethylene glycol). Biomacromolecules 2010;11:934-43. [DOI: 10.1021/bm901371p] [Cited by in Crossref: 130] [Cited by in F6Publishing: 114] [Article Influence: 10.8] [Reference Citation Analysis]
42 Nabid MR, Tabatabaei Rezaei SJ, Sedghi R, Niknejad H, Entezami AA, Oskooie HA, Heravi MM. Self-assembled micelles of well-defined pentaerythritol-centered amphiphilic A4B8 star-block copolymers based on PCL and PEG for hydrophobic drug delivery. Polymer 2011;52:2799-809. [DOI: 10.1016/j.polymer.2011.04.054] [Cited by in Crossref: 88] [Cited by in F6Publishing: 80] [Article Influence: 8.0] [Reference Citation Analysis]
43 Tamboli V, Mishra GP, Mitra AK. Novel pentablock copolymer (PLA-PCL-PEG-PCL-PLA) based nanoparticles for controlled drug delivery: Effect of copolymer compositions on the crystallinity of copolymers and in vitro drug release profile from nanoparticles. Colloid Polym Sci 2013;291:1235-45. [PMID: 23626400 DOI: 10.1007/s00396-012-2854-0] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 5.0] [Reference Citation Analysis]
44 Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci 2016;83:184-202. [PMID: 26747018 DOI: 10.1016/j.ejps.2015.12.031] [Cited by in Crossref: 273] [Cited by in F6Publishing: 238] [Article Influence: 39.0] [Reference Citation Analysis]
45 Wang K, Lei Y, Xia D, Xu P, Zhu T, Jiang Z, Ma Y. Neutrophil membranes coated, antibiotic agent loaded nanoparticles targeting to the lung inflammation. Colloids Surf B Biointerfaces 2020;188:110755. [PMID: 31887646 DOI: 10.1016/j.colsurfb.2019.110755] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
46 Luo W, Ruan D, Liu D, Xie K, Li X, Deng W, Guo C. Measurement and Correlation for Solubilities of Adipic Acid in Acetic Acid + ε-Caprolactone Mixtures and Cyclohexanone + ε-Caprolactone Mixtures. J Chem Eng Data 2016;61:2474-80. [DOI: 10.1021/acs.jced.6b00177] [Cited by in Crossref: 20] [Article Influence: 3.3] [Reference Citation Analysis]
47 Li Y, Zheng X, Cao Z, Xu W, Zhang J, Gong M. Self-assembled peptide (CADY-1) improved the clinical application of doxorubicin. International Journal of Pharmaceutics 2012;434:209-14. [DOI: 10.1016/j.ijpharm.2012.06.003] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
48 Espinoza SM, Patil HI, San Martin Martinez E, Casañas Pimentel R, Ige PP. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. International Journal of Polymeric Materials and Polymeric Biomaterials 2020;69:85-126. [DOI: 10.1080/00914037.2018.1539990] [Cited by in Crossref: 34] [Cited by in F6Publishing: 10] [Article Influence: 11.3] [Reference Citation Analysis]
49 Lim HJ, Lee H, Kim KH, Huh J, Ahn C, Kim JW. Effect of molecular architecture on micellization, drug loading and releasing of multi-armed poly(ethylene glycol)-b-poly(ε-caprolactone) star polymers. Colloid Polym Sci 2013;291:1817-27. [DOI: 10.1007/s00396-013-2916-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
50 Bobbala S, Tamboli V, McDowell A, Mitra AK, Hook S. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines. AAPS J 2016;18:261-9. [PMID: 26589309 DOI: 10.1208/s12248-015-9843-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
51 Payyappilly SS, Panja S, Mandal P, Dhara S, Chattopadhyay S. Organic solvent-free low temperature method of preparation for self assembled amphiphilic poly(ϵ-caprolactone)–poly(ethylene glycol) block copolymer based nanocarriers for protein delivery. Colloids and Surfaces B: Biointerfaces 2015;135:510-7. [DOI: 10.1016/j.colsurfb.2015.07.075] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
52 Ilkar Erdagi S, Yildiz U. Diosgenin-conjugated PCL–MPEG polymeric nanoparticles for the co-delivery of anticancer drugs: design, optimization, in vitro drug release and evaluation of anticancer activity. New J Chem 2019;43:6622-35. [DOI: 10.1039/c9nj00659a] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
53 Wang X, Deng L, Cai L, Zhang X, Zheng H, Deng C, Duan X, Zhao X, Wei Y, Chen L. Preparation, characterization, pharmacokinetics, and bioactivity of honokiol‐in‐hydroxypropyl‐β‐cyclodextrin‐in‐liposome. Journal of Pharmaceutical Sciences 2011;100:3357-64. [DOI: 10.1002/jps.22534] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
54 Lei Y, Lai Y, Li Y, Li S, Cheng G, Li D, Li H, He B, Gu Z. Anticancer drug delivery of PEG based micelles with small lipophilic moieties. Int J Pharm 2013;453:579-86. [PMID: 23756205 DOI: 10.1016/j.ijpharm.2013.06.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
55 Im JS, Lee SK, Bai BC, Lee Y. Prediction and characterization of drug release in a multi-drug release system. Journal of Industrial and Engineering Chemistry 2012;18:325-30. [DOI: 10.1016/j.jiec.2011.11.101] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
56 Kocak P, Oz UC, Bolat ZB, Ozkose UU, Gulyuz S, Tasdelen MA, Yilmaz O, Bozkir A, Sahin F, Telci D. The Utilization of Poly(2-ethyl-2-oxazoline)-b-Poly(ε-caprolactone) Ellipsoidal Particles for Intracellular BIKDDA Delivery to Prostate Cancer. Macromol Biosci 2021;21:e2000287. [PMID: 33191572 DOI: 10.1002/mabi.202000287] [Reference Citation Analysis]
57 Dash TK, Konkimalla VB. Polymeric Modification and Its Implication in Drug Delivery: Poly-ε-caprolactone (PCL) as a Model Polymer. Mol Pharmaceutics 2012;9:2365-79. [DOI: 10.1021/mp3001952] [Cited by in Crossref: 108] [Cited by in F6Publishing: 83] [Article Influence: 10.8] [Reference Citation Analysis]
58 Gou M, Zheng X, Men K, Zhang J, Zheng L, Wang X, Luo F, Zhao Y, Zhao X, Wei Y, Qian Z. Poly(ε-caprolactone)/Poly(ethylene glycol)/Poly(ε-caprolactone) Nanoparticles: Preparation, Characterization, and Application in Doxorubicin Delivery. J Phys Chem B 2009;113:12928-33. [DOI: 10.1021/jp905781g] [Cited by in Crossref: 62] [Cited by in F6Publishing: 53] [Article Influence: 4.8] [Reference Citation Analysis]
59 Luo Y, Huang R, Xu F, Chen Y. pH-Sensitive biodegradable PMAA2-b-PLA-b-PMAA2 H-type multiblock copolymer micelles: synthesis, characterization, and drug release applications. J Mater Sci 2014;49:7730-41. [DOI: 10.1007/s10853-014-8483-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
60 Sebastian Payyappilly S, Dhara S, Chattopadhyay S. The heat–chill method for preparation of self-assembled amphiphilic poly(ε-caprolactone)–poly(ethylene glycol) block copolymer based micellar nanoparticles for drug delivery. Soft Matter 2014;10:2150-9. [DOI: 10.1039/c3sm52699b] [Cited by in Crossref: 21] [Cited by in F6Publishing: 3] [Article Influence: 2.6] [Reference Citation Analysis]
61 Cao Y, Liu M, Kuang Y, Zu G, Xiong D, Pei R. A poly(ε-caprolactone)–poly(glycerol)–poly(ε-caprolactone) triblock copolymer for designing a polymeric micelle as a tumor targeted magnetic resonance imaging contrast agent. J Mater Chem B 2017;5:8408-16. [DOI: 10.1039/c7tb01967j] [Cited by in Crossref: 9] [Article Influence: 1.8] [Reference Citation Analysis]
62 Zhang S, Xu J, Chen H, Song Z, Wu Y, Dai X, Kong J. Acid-Cleavable Unimolecular Micelles from Amphiphilic Star Copolymers for Triggered Release of Anticancer Drugs. Macromol Biosci 2017;17. [PMID: 27758038 DOI: 10.1002/mabi.201600258] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
63 Yang X, Li Z, Wu Q, Chen S, Yi C, Gong C. TRAIL and curcumin codelivery nanoparticles enhance TRAIL-induced apoptosis through upregulation of death receptors. Drug Deliv 2017;24:1526-36. [PMID: 28994313 DOI: 10.1080/10717544.2017.1384863] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
64 Ungaro F, Conte C, Ostacolo L, Maglio G, Barbieri A, Arra C, Misso G, Abbruzzese A, Caraglia M, Quaglia F. Core-shell biodegradable nanoassemblies for the passive targeting of docetaxel: features, antiproliferative activity and in vivo toxicity. Nanomedicine 2012;8:637-46. [PMID: 21889924 DOI: 10.1016/j.nano.2011.08.012] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.1] [Reference Citation Analysis]
65 Zhang L, He Y, Ma G, Song C, Sun H. Paclitaxel-loaded polymeric micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) triblock copolymers: in vitro and in vivo evaluation. Nanomedicine 2012;8:925-34. [PMID: 22101107 DOI: 10.1016/j.nano.2011.11.005] [Cited by in Crossref: 63] [Cited by in F6Publishing: 58] [Article Influence: 5.7] [Reference Citation Analysis]
66 Hu C, Chen Z, Wu S, Han Y, Wang H, Sun H, Kong D, Leng X, Wang C, Zhang L, Zhu D. Micelle or polymersome formation by PCL-PEG-PCL copolymers as drug delivery systems. Chinese Chemical Letters 2017;28:1905-9. [DOI: 10.1016/j.cclet.2017.07.020] [Cited by in Crossref: 37] [Cited by in F6Publishing: 18] [Article Influence: 7.4] [Reference Citation Analysis]
67 Gou M, Shi H, Guo G, Men K, Zhang J, Zheng L, Li Z, Luo F, Qian Z, Zhao X, Wei Y. Improving anticancer activity and reducing systemic toxicity of doxorubicin by self-assembled polymeric micelles. Nanotechnology 2011;22:095102. [PMID: 21270494 DOI: 10.1088/0957-4484/22/9/095102] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.1] [Reference Citation Analysis]
68 Lee CH, Li YJ, Huang CC, Lai JY. Poly(ε-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment. Nanoscale 2017;9:11754-64. [PMID: 28782783 DOI: 10.1039/c7nr03221h] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
69 Charoongchit P, Suksiriworapong J, Sripha K, Mao S, Sapin-minet A, Maincent P, Junyaprasert VB. Self-aggregation of cationically modified poly( ε -caprolactone) 2 - co -poly(ethylene glycol) copolymers: Effect of cationic grafting ligand and poly( ε -caprolactone) chain length. Materials Science and Engineering: C 2017;72:444-55. [DOI: 10.1016/j.msec.2016.11.043] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
70 Zhang Z, Xu L, Chen H, Li X. Rapamycin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles: preparation, characterization and potential application in corneal transplantation. J Pharm Pharmacol 2014;66:557-63. [PMID: 24635557 DOI: 10.1111/jphp.12089] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
71 Guo F, Guo D, Zhang W, Yan Q, Yang Y, Hong W, Yang G. Preparation of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles by a microchannel technology. Eur J Pharm Sci 2017;99:328-36. [PMID: 28062259 DOI: 10.1016/j.ejps.2017.01.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
72 Alami-Milani M, Zakeri-Milani P, Valizadeh H, Salehi R, Salatin S, Naderinia A, Jelvehgari M. Novel Pentablock Copolymers as Thermosensitive Self-Assembling Micelles for Ocular Drug Delivery. Adv Pharm Bull 2017;7:11-20. [PMID: 28507933 DOI: 10.15171/apb.2017.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]