BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu K, Chen X, Ding M. Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Optik 2014;125:4057-63. [DOI: 10.1016/j.ijleo.2014.01.114] [Cited by in Crossref: 71] [Cited by in F6Publishing: 71] [Article Influence: 7.9] [Reference Citation Analysis]
Number Citing Articles
1 Feng X, Cai W, Zheng R, Tang L, Zhou J, Wang H, Liao J, Luo B, Cheng W, Wei A, Zhao W, Jing X, Liang P, Yu J, Huang Q. Diagnosis of hepatocellular carcinoma using deep network with multi-view enhanced patterns mined in contrast-enhanced ultrasound data. Engineering Applications of Artificial Intelligence 2023;118:105635. [DOI: 10.1016/j.engappai.2022.105635] [Reference Citation Analysis]
2 Kalapala R, Rughwani H, Reddy DN. Artificial Intelligence in Hepatology- Ready for the Primetime. J Clin Exp Hepatol 2023;13:149-61. [PMID: 36647407 DOI: 10.1016/j.jceh.2022.06.009] [Reference Citation Analysis]
3 Martinino A, Aloulou M, Chatterjee S, Scarano Pereira JP, Singhal S, Patel T, Kirchgesner TP, Agnes S, Annunziata S, Treglia G, Giovinazzo F. Artificial Intelligence in the Diagnosis of Hepatocellular Carcinoma: A Systematic Review. JCM 2022;11:6368. [DOI: 10.3390/jcm11216368] [Reference Citation Analysis]
4 Vadlamudi SH, Sai Souhith Reddy Y, Ajith Sai Kumar Reddy P, Periasamy P, Vali Mohamad NM. Automatic liver tumor segmentation and identification using fully connected convolutional neural network from CT images. Concurrency and Computation. [DOI: 10.1002/cpe.7212] [Reference Citation Analysis]
5 Cao LL, Peng M, Xie X, Chen GQ, Huang SY, Wang JY, Jiang F, Cui XW, Dietrich CF. Artificial intelligence in liver ultrasound. World J Gastroenterol 2022; 28(27): 3398-3409 [DOI: 10.3748/wjg.v28.i27.3398] [Reference Citation Analysis]
6 Kalejahi BK, Meshgini S, Danishvar S, Khorram S. Diagnosis of liver disease by computer- assisted imaging techniques: A literature review. IDA 2022;26:1097-114. [DOI: 10.3233/ida-216379] [Reference Citation Analysis]
7 Gong X, Zhao X, Fan L, Li T, Guo Y, Luo J. BUS-net: a bimodal ultrasound network for breast cancer diagnosis. Int J Mach Learn & Cyber . [DOI: 10.1007/s13042-022-01596-6] [Reference Citation Analysis]
8 Turco S, Tiyarattanachai T, Ebrahimkheil K, Eisenbrey J, Kamaya A, Mischi M, Lyshchik A, Kaffas AE. Interpretable Machine Learning for Characterization of Focal Liver Lesions by Contrast-Enhanced Ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2022;69:1670-81. [PMID: 35320099 DOI: 10.1109/TUFFC.2022.3161719] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Sirbu CL, Seiculescu C, Adrian Burdan G, Moga T, Daniel Caleanu C. Evaluation of Tracking Algorithms for Contrast Enhanced Ultrasound Imaging Exploration. Australasian Computer Science Week 2022 2022. [DOI: 10.1145/3511616.3513111] [Reference Citation Analysis]
10 Khan RA, Luo Y, Wu F. Machine learning based liver disease diagnosis: A systematic review. Neurocomputing 2022;468:492-509. [DOI: 10.1016/j.neucom.2021.08.138] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
11 Kashala Kabe G, Song Y, Liu Z. FireNet-MLstm for classifying liver lesions by using deep features in CT images. Multimed Tools Appl 2022;81:1607-1623. [DOI: 10.1007/s11042-021-11411-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Anil B. C., Dayananda P., Nethravathi B., Raisinghani MS. Efficient Local Cloud-Based Solution for Liver Cancer Detection Using Deep Learning: . International Journal of Cloud Applications and Computing 2022;12:1-13. [DOI: 10.4018/ijcac.2022010109] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Ruan D, Shi Y, Jin L, Yang Q, Yu W, Ren H, Zheng W, Chen Y, Zheng N, Zheng M. An ultrasound image-based deep multi-scale texture network for liver fibrosis grading in patients with chronic HBV infection. Liver Int 2021;41:2440-54. [PMID: 34219353 DOI: 10.1111/liv.14999] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
14 Behboodi B, Rivaz H, Lalondrelle S, Harris E. Automatic 3D Ultrasound Segmentation of Uterus Using Deep Learning. 2021 IEEE International Ultrasonics Symposium (IUS) 2021. [DOI: 10.1109/ius52206.2021.9593671] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Lee HW, Sung JJY, Ahn SH. Artificial intelligence in liver disease. J Gastroenterol Hepatol 2021;36:539-42. [PMID: 33709605 DOI: 10.1111/jgh.15409] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
16 Nonsakhoo W, Saiyod S, Sirisawat P, Suwanwerakamtorn R, Chamadol N, Khuntikeo N. Liver Ultrasound Image Classification of Periductal Fibrosis Based on Transfer Learning and FCNet for Liver Ultrasound Images Analysis System. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) 2021. [DOI: 10.1109/icccis51004.2021.9397182] [Reference Citation Analysis]
17 Xi IL, Wu J, Guan J, Zhang PJ, Horii SC, Soulen MC, Zhang Z, Bai HX. Deep learning for differentiation of benign and malignant solid liver lesions on ultrasonography. Abdom Radiol (NY) 2021;46:534-43. [PMID: 32681268 DOI: 10.1007/s00261-020-02564-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
18 Mao B, Ma J, Duan S, Xia Y, Tao Y, Zhang L. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. Eur Radiol 2021;31:4576-86. [PMID: 33447862 DOI: 10.1007/s00330-020-07562-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
19 Giannou O, Giannou AD, Zazara DE, Kleinschmidt D, Mummert T, Stüben BO, Kaul MG, Adam G, Huber S, Pavlidis G. Liver Cancer Trait Detection and Classification Through Machine Learning on Smart Mobile Devices. Proceedings of the International Neural Networks Society 2021. [DOI: 10.1007/978-3-030-80568-5_8] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Wang Y, Ge X, Ma H, Qi S, Zhang G, Yao Y. Deep Learning in Medical Ultrasound Image Analysis: A Review. IEEE Access 2021;9:54310-24. [DOI: 10.1109/access.2021.3071301] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
21 Dhar P, Suganya Devi K, Satti SK, Srinivasan P. Detail Study of Different Algorithms for Early Detection of Cancer. Health Informatics: A Computational Perspective in Healthcare 2021. [DOI: 10.1007/978-981-15-9735-0_12] [Reference Citation Analysis]
22 Pasyar P, Mahmoudi T, Kouzehkanan SM, Ahmadian A, Arabalibeik H, Soltanian N, Radmard AR. Hybrid classification of diffuse liver diseases in ultrasound images using deep convolutional neural networks. Informatics in Medicine Unlocked 2021;22:100496. [DOI: 10.1016/j.imu.2020.100496] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
23 Ba Alawi AE, Saeed AYA, Radman BMN, Alzekri BT. A Comparative Study on Liver Tumor Detection Using CT Images. Lecture Notes on Data Engineering and Communications Technologies 2021. [DOI: 10.1007/978-3-030-70713-2_14] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Li B, Ren X, Yan K, Lu L, Huang L, Xie G, Xiao J, Tai D, Harrison AP. Learning from Subjective Ratings Using Auto-Decoded Deep Latent Embeddings. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 2021. [DOI: 10.1007/978-3-030-87240-3_26] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Gunasekhar P, Vijayalakshmi S. Analysis on segmentation and biomarker‐based approaches for liver cancer detection: A survey. IET image process 2021;15:845-55. [DOI: 10.1049/ipr2.12073] [Reference Citation Analysis]
26 Maurya B, Hiranwal S, Kumar M. A Review on Liver Cancer Detection Techniques. 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE) 2020. [DOI: 10.1109/icraie51050.2020.9358362] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
27 Sirbu CL, Simion G, Caleanu CD. Deep CNN for Contrast-Enhanced Ultrasound Focal Liver Lesions Diagnosis. 2020 International Symposium on Electronics and Telecommunications (ISETC) 2020. [DOI: 10.1109/isetc50328.2020.9301116] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
28 Shan C, Tan T, Han J, Huang D. Ultrasound tissue classification: a review. Artif Intell Rev 2021;54:3055-88. [DOI: 10.1007/s10462-020-09920-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Akkus Z, Cai J, Boonrod A, Zeinoddini A, Weston AD, Philbrick KA, Erickson BJ. A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence-Powered Ultrasound for Improving Clinical Workflow. J Am Coll Radiol 2019;16:1318-28. [PMID: 31492410 DOI: 10.1016/j.jacr.2019.06.004] [Cited by in Crossref: 77] [Cited by in F6Publishing: 83] [Article Influence: 25.7] [Reference Citation Analysis]
30 [DOI: 10.1109/cisce50729.2020.00084] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
31 Ghoniem RM. A Novel Bio-Inspired Deep Learning Approach for Liver Cancer Diagnosis. Information 2020;11:80. [DOI: 10.3390/info11020080] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
32 Turco S, Frinking P, Wildeboer R, Arditi M, Wijkstra H, Lindner JR, Mischi M. Contrast-Enhanced Ultrasound Quantification: From Kinetic Modeling to Machine Learning. Ultrasound Med Biol 2020;46:518-43. [PMID: 31924424 DOI: 10.1016/j.ultrasmedbio.2019.11.008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
33 Dong X, Zhou Y, Wang L, Peng J, Lou Y, Fan Y. Liver Cancer Detection Using Hybridized Fully Convolutional Neural Network Based on Deep Learning Framework. IEEE Access 2020;8:129889-98. [DOI: 10.1109/access.2020.3006362] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
34 Ke F. An Efficient and Accurate DDPG-Based Recurrent Attention Model for Object Localization. IEEE Access 2020;8:129709-129716. [DOI: 10.1109/access.2020.3008171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
35 Sezer A, Sezer HB. Deep Convolutional Neural Network-Based Automatic Classification of Neonatal Hip Ultrasound Images: A Novel Data Augmentation Approach with Speckle Noise Reduction. Ultrasound Med Biol 2020;46:735-49. [PMID: 31882168 DOI: 10.1016/j.ultrasmedbio.2019.09.018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
36 Xu J, Jing M, Wang S, Yang C, Chen X. A review of medical image detection for cancers in digestive system based on artificial intelligence. Expert Rev Med Devices. 2019;16:877-889. [PMID: 31530047 DOI: 10.1080/17434440.2019.1669447] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
37 [DOI: 10.1109/iccp48234.2019.8959687] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
38 Zhang B, Dai N, Tian S, Yuan F, Yu Q. The extraction method of tooth preparation margin line based on S‐Octree CNN. Int J Numer Meth Biomed Engng 2019;35. [DOI: 10.1002/cnm.3241] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
39 Murtaza G, Shuib L, Abdul Wahab AW, Mujtaba G, Mujtaba G, Nweke HF, Al-garadi MA, Zulfiqar F, Raza G, Azmi NA. Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges. Artif Intell Rev 2020;53:1655-720. [DOI: 10.1007/s10462-019-09716-5] [Cited by in Crossref: 58] [Cited by in F6Publishing: 18] [Article Influence: 14.5] [Reference Citation Analysis]
40 Das A, Acharya UR, Panda SS, Sabut S. Deep learning based liver cancer detection using watershed transform and Gaussian mixture model techniques. Cognitive Systems Research 2019;54:165-75. [DOI: 10.1016/j.cogsys.2018.12.009] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 18.0] [Reference Citation Analysis]
41 Liu S, Wang Y, Yang X, Lei B, Liu L, Li SX, Ni D, Wang T. Deep Learning in Medical Ultrasound Analysis: A Review. Engineering 2019;5:261-75. [DOI: 10.1016/j.eng.2018.11.020] [Cited by in Crossref: 267] [Cited by in F6Publishing: 279] [Article Influence: 66.8] [Reference Citation Analysis]
42 [DOI: 10.1145/3364836.3364873] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
43 Mazzia V, Tartaglia A, Chiaberge M, Gandini D. Deep Learning Algorithms for Complex Pattern Recognition in Ultrasonic Sensors Arrays. Machine Learning, Optimization, and Data Science 2019. [DOI: 10.1007/978-3-030-37599-7_3] [Reference Citation Analysis]
44 Guo LH, Wang D, Qian YY, Zheng X, Zhao CK, Li XL, Bo XW, Yue WW, Zhang Q, Shi J, Xu HX. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images. Clin Hemorheol Microcirc. 2018;69:343-354. [PMID: 29630528 DOI: 10.3233/ch-170275] [Cited by in Crossref: 42] [Cited by in F6Publishing: 47] [Article Influence: 8.4] [Reference Citation Analysis]
45 Özyurt F, Tuncer T, Avci E, Koç M, Serhatlioğlu İ. A Novel Liver Image Classification Method Using Perceptual Hash-Based Convolutional Neural Network. Arab J Sci Eng 2019;44:3173-82. [DOI: 10.1007/s13369-018-3454-1] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 8.2] [Reference Citation Analysis]
46 Brattain LJ, Telfer BA, Dhyani M, Grajo JR, Samir AE. Machine learning for medical ultrasound: status, methods, and future opportunities. Abdom Radiol (NY) 2018;43:786-99. [PMID: 29492605 DOI: 10.1007/s00261-018-1517-0] [Cited by in Crossref: 96] [Cited by in F6Publishing: 101] [Article Influence: 19.2] [Reference Citation Analysis]
47 [DOI: 10.1109/icassp.2018.8461575] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 8.2] [Reference Citation Analysis]
48 Raghesh Krishnan K, Midhila M, Sudhakar R. Tensor Flow Based Analysis and Classification of Liver Disorders from Ultrasonography Images. Computational Vision and Bio Inspired Computing 2018. [DOI: 10.1007/978-3-319-71767-8_64] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
49 Viebke A, Memeti S, Pllana S, Abraham A. CHAOS: a parallelization scheme for training convolutional neural networks on Intel Xeon Phi. J Supercomput 2019;75:197-227. [DOI: 10.1007/s11227-017-1994-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
50 Hassan TM, Elmogy M, Sallam E. Diagnosis of Focal Liver Diseases Based on Deep Learning Technique for Ultrasound Images. Arab J Sci Eng 2017;42:3127-40. [DOI: 10.1007/s13369-016-2387-9] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 8.8] [Reference Citation Analysis]
51 Sridevi S, Nirmala S. ANFIS based decision support system for prenatal detection of Truncus Arteriosus congenital heart defect. Applied Soft Computing 2016;46:577-87. [DOI: 10.1016/j.asoc.2015.09.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
52 Shi J, Zhou S, Liu X, Zhang Q, Lu M, Wang T. Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 2016;194:87-94. [DOI: 10.1016/j.neucom.2016.01.074] [Cited by in Crossref: 120] [Cited by in F6Publishing: 53] [Article Influence: 17.1] [Reference Citation Analysis]
53 Lee J, Jung J, Kim H. Medical Parameter Extraction Using Time-Density Data in Contrast-Enhanced Ultrasound Image Sequence. KIPS Transactions on Software and Data Engineering 2015;4:297-300. [DOI: 10.3745/ktsde.2015.4.7.297] [Reference Citation Analysis]
54 Kim H. Dynamic Parameter Visualization and Noise Suppression Techniques for Contrast-Enhanced Ultrasonography. Journal of KIISE 2015;42:910-918. [DOI: 10.5626/jok.2015.42.7.910] [Reference Citation Analysis]
55 Gatos I, Tsantis S, Spiliopoulos S, Skouroliakou A, Theotokas I, Zoumpoulis P, Hazle JD, Kagadis GC. A new automated quantification algorithm for the detection and evaluation of focal liver lesions with contrast-enhanced ultrasound: Focal liver lesions and contrast-enhanced ultrasound. Med Phys 2015;42:3948-59. [DOI: 10.1118/1.4921753] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 4.0] [Reference Citation Analysis]