BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Scolari FL, Faganello LS, Garbin HI, Piva E Mattos B, Biolo A. A systematic review of microRNAs in patients with hypertrophic cardiomyopathy. Int J Cardiol 2021;327:146-54. [PMID: 33212095 DOI: 10.1016/j.ijcard.2020.11.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Tamargo J, Tamargo M, Caballero R. Hypertrophic cardiomyopathy: an up-to-date snapshot of the clinical drug development pipeline. Expert Opin Investig Drugs 2022. [PMID: 36062808 DOI: 10.1080/13543784.2022.2113374] [Reference Citation Analysis]
2 Wu D, Zhang J, Xiang Z, Wu J, Huang Y, Yang J. Myocarsdial-derived miR-29a-regulated DNMTs: A novel therapeutic target for myocardial fibrosis. Int J Cardiol 2022;358:76. [PMID: 35452762 DOI: 10.1016/j.ijcard.2022.04.049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Chen F, Li W, Zhang D, Fu Y, Yuan W, Luo G, Liu F, Luo J. MALAT1 regulates hypertrophy of cardiomyocytes by modulating the miR-181a/HMGB2 pathway. Eur J Histochem 2022;66. [PMID: 35726535 DOI: 10.4081/ejh.2022.3426] [Reference Citation Analysis]
4 Scolari FL, Biolo A. Reply to the letter "Myocardial-derived miR-29a-regulated DNMTs: A novel therapeutic target for myocardial fibrosis". Int J Cardiol 2022:S0167-5273(22)00820-8. [PMID: 35660555 DOI: 10.1016/j.ijcard.2022.06.002] [Reference Citation Analysis]
5 Feng W, Han S, Mladenka P. lncRNA ADAMTS9-AS1/circFN1 Competitively Binds to miR-206 to Elevate the Expression of ACTB, Thus Inducing Hypertrophic Cardiomyopathy. Oxidative Medicine and Cellular Longevity 2022;2022:1-13. [DOI: 10.1155/2022/1450610] [Reference Citation Analysis]
6 Huang H, Chen H, Liang X, Chen X, Chen X, Chen C. Upregulated miR-328-3p and its high risk in atrial fibrillation: A systematic review and meta-analysis with meta-regression. Medicine (Baltimore) 2022;101:e28980. [PMID: 35244069 DOI: 10.1097/MD.0000000000028980] [Reference Citation Analysis]
7 Osmak G, Baulina N, Kiselev I, Favorova O. MiRNA-Regulated Pathways for Hypertrophic Cardiomyopathy: Network-Based Approach to Insight into Pathogenesis. Genes (Basel) 2021;12:2016. [PMID: 34946964 DOI: 10.3390/genes12122016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Thottakara T, Lund N, Krämer E, Kirchhof P, Carrier L, Patten M. A Novel miRNA Screen Identifies miRNA-4454 as a Candidate Biomarker for Ventricular Fibrosis in Patients with Hypertrophic Cardiomyopathy. Biomolecules 2021;11:1718. [PMID: 34827715 DOI: 10.3390/biom11111718] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Nappi F, Iervolino A, Avtaar Singh SS, Chello M. MicroRNAs in Valvular Heart Diseases: Biological Regulators, Prognostic Markers and Therapeutical Targets. Int J Mol Sci 2021;22:12132. [PMID: 34830016 DOI: 10.3390/ijms222212132] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
10 Vakrou S, Vlachopoulos C, Gatzoulis KA. Risk Stratification for Primary Prevention of Sudden Cardiac Death in Hypertrophic Cardiomyopathy. Arq Bras Cardiol 2021;117:157-9. [PMID: 34320088 DOI: 10.36660/abc.20201339] [Reference Citation Analysis]
11 Pagiatakis C, Di Mauro V. The Emerging Role of Epigenetics in Therapeutic Targeting of Cardiomyopathies. Int J Mol Sci 2021;22:8721. [PMID: 34445422 DOI: 10.3390/ijms22168721] [Cited by in F6Publishing: 6] [Reference Citation Analysis]