BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kuo W, Wang W, Tsai C, Way C, Hsu H, Chen L. Diallyl trisufide (DATS) suppresses high glucose-induced cardiomyocyte apoptosis by inhibiting JNK/NFκB signaling via attenuating ROS generation. International Journal of Cardiology 2013;168:270-80. [DOI: 10.1016/j.ijcard.2012.09.080] [Cited by in Crossref: 66] [Cited by in F6Publishing: 61] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Gartung A, Zhao J, Chen S, Mottillo E, VanHecke GC, Ahn YH, Maddipati KR, Sorokin A, Granneman J, Lee MJ. Characterization of Eicosanoids Produced by Adipocyte Lipolysis: IMPLICATION OF CYCLOOXYGENASE-2 IN ADIPOSE INFLAMMATION. J Biol Chem 2016;291:16001-10. [PMID: 27246851 DOI: 10.1074/jbc.M116.725937] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
2 Wu B, You S, Qian H, Wu S, Lu S, Zhang Y, Sun Y, Zhang N. The role of SIRT2 in vascular-related and heart-related diseases: A review. J Cell Mol Med 2021;25:6470-8. [PMID: 34028177 DOI: 10.1111/jcmm.16618] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Jeremic JN, Jakovljevic VL, Zivkovic VI, Srejovic IM, Bradic JV, Milosavljevic IM, Mitrovic SL, Jovicic NU, Bolevich SB, Svistunov AA, Tyagi SC, Jeremic NS. Garlic Derived Diallyl Trisulfide in Experimental Metabolic Syndrome: Metabolic Effects and Cardioprotective Role. Int J Mol Sci 2020;21:E9100. [PMID: 33265949 DOI: 10.3390/ijms21239100] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
4 Donnarumma E, Trivedi RK, Lefer DJ. Protective Actions of H2S in Acute Myocardial Infarction and Heart Failure. Compr Physiol 2017;7:583-602. [PMID: 28333381 DOI: 10.1002/cphy.c160023] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
5 Chen L, Chen Q, Zhu X, Kong D, Wu L, Shao J, Zheng S. Diallyl trisulfide protects against ethanol-induced oxidative stress and apoptosis via a hydrogen sulfide-mediated mechanism. International Immunopharmacology 2016;36:23-30. [DOI: 10.1016/j.intimp.2016.04.015] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 5.7] [Reference Citation Analysis]
6 Hackfort BT, Mishra PK. Emerging role of hydrogen sulfide-microRNA crosstalk in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2016;310:H802-12. [PMID: 26801305 DOI: 10.1152/ajpheart.00660.2015] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
7 Tsai CY, Wen SY, Shibu MA, Yang YC, Peng H, Wang B, Wei YM, Chang HY, Lee CY, Huang CY, Kuo WW. Diallyl trisulfide protects against high glucose-induced cardiac apoptosis by stimulating the production of cystathionine gamma-lyase-derived hydrogen sulfide. Int J Cardiol 2015;195:300-10. [PMID: 26056963 DOI: 10.1016/j.ijcard.2015.05.111] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 6.7] [Reference Citation Analysis]
8 Yu W, Zha W, Ke Z, Min Q, Li C, Sun H, Liu C. Curcumin Protects Neonatal Rat Cardiomyocytes against High Glucose-Induced Apoptosis via PI3K/Akt Signalling Pathway. J Diabetes Res 2016;2016:4158591. [PMID: 26989696 DOI: 10.1155/2016/4158591] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
9 Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;142:375-415. [PMID: 24462787 DOI: 10.1016/j.pharmthera.2014.01.003] [Cited by in Crossref: 297] [Cited by in F6Publishing: 291] [Article Influence: 37.1] [Reference Citation Analysis]
10 Delfan M, Delphan M, Kordi MR, Ravasi AA, Safa M, Gorgani-Firuzjaee S, Fatemi A, Bandarian F, Nasli-Esfahani E. High intensity interval training improves diabetic cardiomyopathy via miR-1 dependent suppression of cardiomyocyte apoptosis in diabetic rats. J Diabetes Metab Disord 2020;19:145-52. [PMID: 32550164 DOI: 10.1007/s40200-019-00485-0] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Guo Y, Zhuang X, Huang Z, Zou J, Yang D, Hu X, Du Z, Wang L, Liao X. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochim Biophys Acta Mol Basis Dis 2018;1864:238-51. [PMID: 28982613 DOI: 10.1016/j.bbadis.2017.09.029] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 12.6] [Reference Citation Analysis]
12 Yu L, Di W, Dong X, Li Z, Xue X, Zhang J, Wang Q, Xiao X, Han J, Yang Y, Wang H. Diallyl trisulfide exerts cardioprotection against myocardial ischemia-reperfusion injury in diabetic state, role of AMPK-mediated AKT/GSK-3β/HIF-1α activation. Oncotarget 2017;8:74791-805. [PMID: 29088824 DOI: 10.18632/oncotarget.20422] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
13 Yang YC, Tsai CY, Chen CL, Kuo CH, Hou CW, Cheng SY, Aneja R, Huang CY, Kuo WW. Pkcδ Activation is Involved in ROS-Mediated Mitochondrial Dysfunction and Apoptosis in Cardiomyocytes Exposed to Advanced Glycation End Products (Ages). Aging Dis 2018;9:647-63. [PMID: 30090653 DOI: 10.14336/AD.2017.0924] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
14 Silva-Islas CA, Chánez-Cárdenas ME, Barrera-Oviedo D, Ortiz-Plata A, Pedraza-Chaverri J, Maldonado PD. Diallyl Trisulfide Protects Rat Brain Tissue against the Damage Induced by Ischemia-Reperfusion through the Nrf2 Pathway. Antioxidants (Basel) 2019;8:E410. [PMID: 31540440 DOI: 10.3390/antiox8090410] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Huang YT, Liu CH, Yang YC, Aneja R, Wen SY, Huang CY, Kuo WW. ROS- and HIF1α-dependent IGFBP3 upregulation blocks IGF1 survival signaling and thereby mediates high-glucose-induced cardiomyocyte apoptosis. J Cell Physiol 2019;234:13557-70. [PMID: 30659610 DOI: 10.1002/jcp.28034] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
16 Zhao G, Jiang K, Wu H, Qiu C, Deng G, Peng X. Polydatin reduces Staphylococcus aureus lipoteichoic acid-induced injury by attenuating reactive oxygen species generation and TLR2-NFκB signalling. J Cell Mol Med 2017;21:2796-808. [PMID: 28524642 DOI: 10.1111/jcmm.13194] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
17 Song X, Yue Z, Nie L, Zhao P, Zhu K, Wang Q. Biological Functions of Diallyl Disulfide, a Garlic-Derived Natural Organic Sulfur Compound. Evid Based Complement Alternat Med 2021;2021:5103626. [PMID: 34745287 DOI: 10.1155/2021/5103626] [Reference Citation Analysis]
18 Gorjian H, Khaligh NG. 3,4-Dichloro-1,2,5-thiadiazole: a commercially available electrophilic sulfur transfer agent and safe resource of ethanedinitrile. Journal of Sulfur Chemistry. [DOI: 10.1080/17415993.2021.1991928] [Reference Citation Analysis]
19 Jeremic JN, Jakovljevic VL, Zivkovic VI, Srejovic IM, Bradic JV, Bolevich S, Nikolic Turnic TR, Mitrovic SL, Jovicic NU, Tyagi SC, Jeremic NS. The cardioprotective effects of diallyl trisulfide on diabetic rats with ex vivo induced ischemia/reperfusion injury. Mol Cell Biochem 2019;460:151-64. [PMID: 31280436 DOI: 10.1007/s11010-019-03577-w] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
20 Xu XH, Li GL, Wang BA, Qin Y, Bai SR, Rong J, Deng T, Li Q. Diallyl trisufide protects against oxygen glucose deprivation -induced apoptosis by scavenging free radicals via the PI3K/Akt -mediated Nrf2/HO-1 signaling pathway in B35 neural cells. Brain Res 2015;1614:38-50. [PMID: 25896937 DOI: 10.1016/j.brainres.2015.04.014] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 4.9] [Reference Citation Analysis]
21 Tocmo R, Liang D, Lin Y, Huang D. Chemical and biochemical mechanisms underlying the cardioprotective roles of dietary organopolysulfides. Front Nutr 2015;2:1. [PMID: 25988131 DOI: 10.3389/fnut.2015.00001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 11] [Article Influence: 3.4] [Reference Citation Analysis]
22 Sumedha N, Miltonprabu S. Diallyl trisulfide ameliorates arsenic-induced hepatotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. Hum Exp Toxicol 2015;34:506-25. [DOI: 10.1177/0960327114543933] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
23 Leung W, Kuo W, Ju D, Wang T, Shao-tsu Chen W, Ho T, Lin YM, Mahalakshmi B, Lin J, Huang C. Protective effects of diallyl trisulfide (DATS) against doxorubicin-induced inflammation and oxidative stress in the brain of rats. Free Radical Biology and Medicine 2020;160:141-8. [DOI: 10.1016/j.freeradbiomed.2020.07.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
24 Zhang H, Wang P, Xue Y, Liu L, Li Z, Liu Y. Allicin ameliorates cognitive impairment in APP/PS1 mice via Suppressing oxidative stress by Blocking JNK Signaling Pathways. Tissue and Cell 2018;50:89-95. [DOI: 10.1016/j.tice.2017.11.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
25 Tao Q, Wu C, Xu R, Niu L, Qin J, Liu N, Zhang P, Wang C. Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of glioma cells by inactivating Wnt/β-catenin signaling. Cell Tissue Res 2017;370:379-90. [PMID: 28815294 DOI: 10.1007/s00441-017-2678-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
26 Xu S, Wang Y, Radford MN, Ferrell AJ, Xian M. Synthesis of Unsymmetric Trisulfides from 9-Fluorenylmethyl Disulfides. Org Lett 2018;20:465-8. [PMID: 29313692 DOI: 10.1021/acs.orglett.7b03846] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
27 Liu X, Guo B, Zhang W, Ma B, Li Y. MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis, and JNK/NF-κB signaling pathway. J Biochem 2021:mvab047. [PMID: 33837411 DOI: 10.1093/jb/mvab047] [Reference Citation Analysis]
28 Hua H, Zhu H, Liu C, Zhang W, Li J, Hu B, Guo Y, Cheng Y, Pi F, Xie Y, Yao W, Qian H. Bioactive compound from the Tibetan turnip (Brassica rapa L.) elicited anti-hypoxia effects in OGD/R-injured HT22 cells by activating the PI3K/AKT pathway. Food Funct 2021;12:2901-13. [PMID: 33710186 DOI: 10.1039/d0fo03190a] [Reference Citation Analysis]
29 Laddha AP, Kulkarni YA. NADPH oxidase: A membrane-bound enzyme and its inhibitors in diabetic complications. Eur J Pharmacol 2020;881:173206. [PMID: 32442539 DOI: 10.1016/j.ejphar.2020.173206] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
30 Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med. 2021;169:317-342. [PMID: 33910093 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
31 Salloum FN. Hydrogen sulfide and cardioprotection — Mechanistic insights and clinical translatability. Pharmacology & Therapeutics 2015;152:11-7. [DOI: 10.1016/j.pharmthera.2015.04.004] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 5.3] [Reference Citation Analysis]
32 Liu X, Zhang Y, Jiang P, Cai J, Fu Q, Li X, Li Z. Ultrasonic cardiogram and MiRNA-21 analysis of cardiac dysfunction in patients with cardiac arrest following cardiopulmonary resuscitation. Comput Methods Programs Biomed 2020;190:105284. [PMID: 32018074 DOI: 10.1016/j.cmpb.2019.105284] [Reference Citation Analysis]
33 Yu Y, Zheng G. Troxerutin protects against diabetic cardiomyopathy through NF‑κB/AKT/IRS1 in a rat model of type 2 diabetes. Mol Med Rep 2017;15:3473-8. [PMID: 28440404 DOI: 10.3892/mmr.2017.6456] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
34 Han W, Wang S, Jiang L, Wang H, Li M, Wang X, Xie K. Diallyl trisulfide (DATS) suppresses benzene-induced cytopenia by modulating haematopoietic cell apoptosis. Environmental Pollution 2017;231:301-10. [DOI: 10.1016/j.envpol.2017.07.069] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
35 Shen YH, Wang LY, Zhang BB, Hu QM, Wang P, He BQ, Bao GH, Liang JY, Wu FH. Ethyl Rosmarinate Protects High Glucose-Induced Injury in Human Endothelial Cells. Molecules 2018;23:E3372. [PMID: 30572638 DOI: 10.3390/molecules23123372] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
36 Khatua TN, Adela R, Banerjee SK. Garlic and cardioprotection: insights into the molecular mechanisms. Can J Physiol Pharmacol 2013;91:448-58. [PMID: 23746107 DOI: 10.1139/cjpp-2012-0315] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 5.3] [Reference Citation Analysis]
37 Zhou H, Sun Y, Zhang L, Kang W, Li N, Li Y. The RhoA/ROCK pathway mediates high glucose-induced cardiomyocyte apoptosis via oxidative stress, JNK, and p38MAPK pathways. Diabetes Metab Res Rev 2018;34:e3022. [PMID: 29745021 DOI: 10.1002/dmrr.3022] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
38 Hansen SS, Aasum E, Hafstad AD. The role of NADPH oxidases in diabetic cardiomyopathy. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2018;1864:1908-13. [DOI: 10.1016/j.bbadis.2017.07.025] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 7.8] [Reference Citation Analysis]
39 Meng G, Zhu J, Xiao Y, Huang Z, Zhang Y, Tang X, Xie L, Chen Y, Shao Y, Ferro A, Wang R, Moore PK, Ji Y. Hydrogen Sulfide Donor GYY4137 Protects against Myocardial Fibrosis. Oxid Med Cell Longev 2015;2015:691070. [PMID: 26078813 DOI: 10.1155/2015/691070] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 6.9] [Reference Citation Analysis]
40 Chen Y, Du J, Zhao YT, Zhang L, Lv G, Zhuang S, Qin G, Zhao TC. Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovasc Diabetol 2015;14:99. [PMID: 26245924 DOI: 10.1186/s12933-015-0262-8] [Cited by in Crossref: 64] [Cited by in F6Publishing: 62] [Article Influence: 9.1] [Reference Citation Analysis]
41 Chen C, Yu L, Cheng B, Xu J, Cai Y, Jin J, Feng R, Xie L, Qu X, Li D, Liu J, Li Y, Cui X, Lu J, Zhou K, Lin Q, Wan J. Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals? Front Cardiovasc Med 2022;8:792592. [DOI: 10.3389/fcvm.2021.792592] [Reference Citation Analysis]
42 Wetzel MD, Wenke JC. Mechanisms by which hydrogen sulfide attenuates muscle function following ischemia-reperfusion injury: effects on Akt signaling, mitochondrial function, and apoptosis. J Transl Med 2019;17:33. [PMID: 30665344 DOI: 10.1186/s12967-018-1753-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
43 Mohammed A, Islam MS. Spice-Derived Bioactive Ingredients: Potential Agents or Food Adjuvant in the Management of Diabetes Mellitus. Front Pharmacol 2018;9:893. [PMID: 30186162 DOI: 10.3389/fphar.2018.00893] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
44 Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018;9:119. [PMID: 29371661 DOI: 10.1038/s41419-017-0135-z] [Cited by in Crossref: 309] [Cited by in F6Publishing: 290] [Article Influence: 77.3] [Reference Citation Analysis]
45 Yu W, Zha W, Guo S, Cheng H, Wu J, Liu C. Flos Puerariae extract prevents myocardial apoptosis via attenuation oxidative stress in streptozotocin-induced diabetic mice. PLoS One 2014;9:e98044. [PMID: 24865768 DOI: 10.1371/journal.pone.0098044] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
46 Hsieh DJ, Ng SC, Zeng RY, Padma VV, Huang CY, Kuo WW. Diallyl Trisulfide (DATS) Suppresses AGE-Induced Cardiomyocyte Apoptosis by Targeting ROS-Mediated PKCδ Activation. Int J Mol Sci 2020;21:E2608. [PMID: 32283691 DOI: 10.3390/ijms21072608] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
47 Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, Kumari S, Ojha S, Arya DS. Protective effect of mangiferin on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats: role of AGE-RAGE/MAPK pathways. Sci Rep 2017;7:42027. [PMID: 28181586 DOI: 10.1038/srep42027] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 8.4] [Reference Citation Analysis]
48 Yu L, Li S, Tang X, Li Z, Zhang J, Xue X, Han J, Liu Y, Zhang Y, Zhang Y, Xu Y, Yang Y, Wang H. Diallyl trisulfide ameliorates myocardial ischemia-reperfusion injury by reducing oxidative stress and endoplasmic reticulum stress-mediated apoptosis in type 1 diabetic rats: role of SIRT1 activation. Apoptosis 2017;22:942-54. [PMID: 28455824 DOI: 10.1007/s10495-017-1378-y] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 12.5] [Reference Citation Analysis]
49 Lin KH, Ng SC, Paul CR, Chen HC, Zeng RY, Liu JS, Padma VV, Huang CY, Kuo WW. MicroRNA-210 repression facilitates advanced glycation end-product (AGE)-induced cardiac mitochondrial dysfunction and apoptosis via JNK activation. J Cell Biochem 2021. [PMID: 34545968 DOI: 10.1002/jcb.30146] [Reference Citation Analysis]
50 Dziri S, Casabianca H, Hanchi B, Hosni K. Composition of garlic essential oil ( Allium sativum L.) as influenced by drying method. Journal of Essential Oil Research 2014;26:91-6. [DOI: 10.1080/10412905.2013.868329] [Cited by in Crossref: 38] [Cited by in F6Publishing: 10] [Article Influence: 4.2] [Reference Citation Analysis]
51 Wen S, Tsai C, Pai P, Chen Y, Yang Y, Aneja R, Huang C, Kuo W. Diallyl trisulfide suppresses doxorubicin-induced cardiomyocyte apoptosis by inhibiting MAPK/NF-κB signaling through attenuation of ROS generation. Environmental Toxicology 2018;33:93-103. [DOI: 10.1002/tox.22500] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
52 Cheng P, Liang H, Lin H, Hao C, Tseng Y, Tu Y, Yeh B, Shen K. Pre-germinated brown rice alleviates non-alcoholic fatty liver disease induced by high fructose and high fat intake in rat. J Clin Biochem Nutr . [DOI: 10.3164/jcbn.21-158] [Reference Citation Analysis]
53 Yang HB, Liu HM, Yan JC, Lu ZY. Effect of Diallyl Trisulfide on Ischemic Tissue Injury and Revascularization in a Diabetic Mouse Model. J Cardiovasc Pharmacol 2018;71:367-74. [PMID: 29642134 DOI: 10.1097/FJC.0000000000000579] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
54 Wu WY, Wang WY, Ma YL, Yan H, Wang XB, Qin YL, Su M, Chen T, Wang YP. Sodium tanshinone IIA silate inhibits oxygen-glucose deprivation/recovery-induced cardiomyocyte apoptosis via suppression of the NF-κB/TNF-α pathway. Br J Pharmacol 2013;169:1058-71. [PMID: 23517194 DOI: 10.1111/bph.12185] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 5.3] [Reference Citation Analysis]
55 Lin KH, Wei YM, Liu CH, Liu JS, Huang IC, Viswanadha VP, Huang CY, Kuo WW. Diallyl Trisulfide Suppresses High-Glucose-Induced Cardiomyocyte Apoptosis by Targeting Reactive Oxygen Species-Mediated Hypoxia-Inducible Factor-1α/Insulin-like Growth Factor Binding Protein 3 Activation. J Agric Food Chem 2021;69:11696-708. [PMID: 34558885 DOI: 10.1021/acs.jafc.1c02384] [Reference Citation Analysis]
56 Karbasforooshan H, Karimi G. The role of SIRT1 in diabetic cardiomyopathy. Biomed Pharmacother 2017;90:386-92. [PMID: 28380414 DOI: 10.1016/j.biopha.2017.03.056] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 10.0] [Reference Citation Analysis]
57 Kar S, Kambis TN, Mishra PK. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2019;316:H1237-52. [PMID: 30925069 DOI: 10.1152/ajpheart.00004.2019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
58 Shi Y, Liang XC, Zhang H, Wu QL, Qu L, Sun Q. Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition. Acta Pharmacol Sin 2013;34:1140-8. [PMID: 23770986 DOI: 10.1038/aps.2013.59] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 4.8] [Reference Citation Analysis]
59 Zhang KL, Lou DD, Guan ZZ. Activation of the AGE/RAGE system in the brains of rats and in SH-SY5Y cells exposed to high level of fluoride might connect to oxidative stress. Neurotoxicol Teratol 2015;48:49-55. [PMID: 25666879 DOI: 10.1016/j.ntt.2015.01.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
60 Ma XY, Ma TC, Feng YF, Xiang G, Lei W, Zhou DP, Yu HL, Xiang LB, Wang L. Promotion of osteointegration by silk fibroin coating under diabetic conditions on 3D printed porous titanium implants via ROS-mediated NF-κB pathway. Biomed Mater 2020. [PMID: 32726758 DOI: 10.1088/1748-605X/abaaa1] [Reference Citation Analysis]
61 Jurkowska H, Wróbel M, Kaczor-Kamińska M, Jasek-Gajda E. A possible mechanism of inhibition of U87MG and SH-SY5Y cancer cell proliferation by diallyl trisulfide and other aspects of its activity. Amino Acids 2017;49:1855-66. [PMID: 28852876 DOI: 10.1007/s00726-017-2484-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
62 Tsai C, Wen S, Cheng S, Wang C, Yang Y, Viswanadha VP, Huang C, Kuo W. Nrf2 Activation as a Protective Feedback to Limit Cell Death in High Glucose-Exposed Cardiomyocytes: C ARDIAC Nrf2 P LAYSa P ROTECTIVE R OLE U NDERHG C ONDITION. J Cell Biochem 2017;118:1659-69. [DOI: 10.1002/jcb.25785] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
63 Kang SC, Sohn EH, Lee SR. Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. Oxid Med Cell Longev 2020;2020:4105382. [PMID: 32064023 DOI: 10.1155/2020/4105382] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
64 Dludla PV, Dias SC, Obonye N, Johnson R, Louw J, Nkambule BB. A Systematic Review on the Protective Effect of N-Acetyl Cysteine Against Diabetes-Associated Cardiovascular Complications. Am J Cardiovasc Drugs 2018;18:283-98. [PMID: 29623672 DOI: 10.1007/s40256-018-0275-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]