1 |
Saddique Z, Imran M, Javaid A, Rizvi NB, Akhtar MN, Iqbal HMN, Bilal M. Enzyme-Linked Metal Organic Frameworks for Biocatalytic Degradation of Antibiotics. Catal Lett 2023. [DOI: 10.1007/s10562-022-04261-3] [Reference Citation Analysis]
|
2 |
Batool I, Iqbal A, Imran M, Ramzan M, Anwar A. Design and Applications of Enzyme-Linked Nanostructured Materials for Efficient Bio-catalysis. Top Catal 2023. [DOI: 10.1007/s11244-022-01770-8] [Reference Citation Analysis]
|
3 |
Peng Y, Wang M, Huang X, Yang F, Shi Y, Liao C, Yu D. Investigation into the magnetic immobilization of lipase and its application in the synthesis of structured triacylglycerols. LWT 2023. [DOI: 10.1016/j.lwt.2023.114466] [Reference Citation Analysis]
|
4 |
Han Z, Fan X, Yu S, Li X, Wang S, Lu L. Metal-organic frameworks (MOFs): A novel platform for laccase immobilization and application. Journal of Environmental Chemical Engineering 2022;10:108795. [DOI: 10.1016/j.jece.2022.108795] [Reference Citation Analysis]
|
5 |
Méndez JC, Arellano U, Solís S, Wang JA, Chen L. Immobilization of Candida Rugosa lipase on Ca/Kit-6 used as bifunctional biocatalysts for the transesterification of coconut oil to biodiesel. Molecular Catalysis 2022;533:112793. [DOI: 10.1016/j.mcat.2022.112793] [Reference Citation Analysis]
|
6 |
Yao Q, Chen J, Li X, Yang W, Ning J, Liang Q, Li Q. Site-selective covalent immobilization of PPARγ using a label-free strategy for chromatographic study. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.108278] [Reference Citation Analysis]
|
7 |
Holyavka MG, Goncharova SS, Sorokin AV, Lavlinskaya MS, Redko YA, Faizullin DA, Baidamshina DR, Zuev YF, Kondratyev MS, Kayumov AR, Artyukhov VG. Novel Biocatalysts Based on Bromelain Immobilized on Functionalized Chitosans and Research on Their Structural Features. Polymers (Basel) 2022;14. [PMID: 36501516 DOI: 10.3390/polym14235110] [Reference Citation Analysis]
|
8 |
Souza PMP, Carballares D, Gonçalves LRB, Fernandez-Lafuente R, Rodrigues S. Immobilization of Lipase B from Candida antarctica in Octyl-Vinyl Sulfone Agarose: Effect of the Enzyme-Support Interactions on Enzyme Activity, Specificity, Structure and Inactivation Pathway. Int J Mol Sci 2022;23. [PMID: 36430745 DOI: 10.3390/ijms232214268] [Reference Citation Analysis]
|
9 |
Germano de Sousa I, Valério Chaves A, de Oliveira ALB, da Silva Moreira K, Gonçalves de Sousa Junior P, Simão Neto F, Cristina Freitas de Carvalho S, Bussons Rodrigues Valério R, Vieira Lima G, Sanders Lopes AA, Martins de Souza MC, da Fonseca AM, Fechine PBA, de Mattos MC, dos Santos JCS. A novel hybrid biocatalyst from immobilized Eversa® Transform 2.0 lipase and its application in biolubricant synthesis. Biocatalysis and Biotransformation 2022. [DOI: 10.1080/10242422.2022.2144263] [Reference Citation Analysis]
|
10 |
Gul I, Zhai S, Zhong X, Chen Q, Yuan X, Du Z, Chen Z, Raheem MA, Deng L, Leeansyah E, Zhang CY, Yu D, Qin P. Angiotensin-Converting Enzyme 2-Based Biosensing Modalities and Devices for Coronavirus Detection. Biosensors (Basel) 2022;12. [PMID: 36354493 DOI: 10.3390/bios12110984] [Reference Citation Analysis]
|
11 |
Bachosz K, Zdarta J, Nghiem LD, Jesionowski T. Multienzymatic conversion of monosaccharides from birch biomass after pretreatment. Environmental Technology & Innovation 2022;28:102874. [DOI: 10.1016/j.eti.2022.102874] [Reference Citation Analysis]
|
12 |
Guimarães JR, Carballares D, Rocha-martin J, Tardioli PW, Fernandez-lafuente R. The immobilization protocol greatly alters the effects of metal phosphate modification on the activity/stability of immobilized lipases. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.10.030] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
13 |
Mechri S, Allala F, Bouacem K, Hasnaoui I, Gwaithan H, Chalbi TB, Saalaoui E, Asehraou A, Noiriel A, Abousalham A, Hacene H, Bouanane-darenfed A, Le Roes-hill M, Jaouadi B. Preparation, characterization, immobilization, and molecular docking analysis of a novel detergent-stable subtilisin-like serine protease from Streptomyces mutabilis strain TN-X30. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.09.161] [Reference Citation Analysis]
|
14 |
Morellon-Sterling R, Bolivar JM, Fernandez-Lafuente R. Switch off/switch on of a cysteinyl protease as a way to preserve the active catalytic group by modification with a reversible covalent thiol modifier: Immobilization of ficin on vinyl-sulfone activated supports. Int J Biol Macromol 2022;220:1155-62. [PMID: 36037909 DOI: 10.1016/j.ijbiomac.2022.08.155] [Reference Citation Analysis]
|
15 |
Çelem EB, Önal S. Removal of Raffinose Family Oligosaccharides from Soymilk by α-Galactosidase Immobilized on Sepabeads EC-EA and Sepabeads EC-HA. ACS Food Sci Technol 2022;2:1266-1275. [DOI: 10.1021/acsfoodscitech.2c00115] [Reference Citation Analysis]
|
16 |
Kamal S, Rehman S, Bibi I, Akhter N, Amir R, Alsanie WF, Iqbal HMN. Graphene oxide/chitosan composites as novel support to provide high yield and stable formulations of pectinase for industrial applications. Int J Biol Macromol 2022;220:683-91. [PMID: 35987366 DOI: 10.1016/j.ijbiomac.2022.08.101] [Reference Citation Analysis]
|
17 |
Jailani N, Jaafar NR, Suhaimi S, Mackeen MM, Bakar FDA, Illias RM. Cross-linked cyclodextrin glucanotransferase aggregates from Bacillus lehensis G1 for cyclodextrin production: Molecular modeling, developmental, physicochemical, kinetic and thermodynamic properties. Int J Biol Macromol 2022;213:516-33. [PMID: 35636531 DOI: 10.1016/j.ijbiomac.2022.05.170] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
Shen J, Zhang S, Fang X, Salmon S. Advances in 3D Gel Printing for Enzyme Immobilization. Gels 2022;8:460. [DOI: 10.3390/gels8080460] [Reference Citation Analysis]
|
19 |
Mohammadi ZB, Zhang F, Kharazmi MS, Jafari SM. Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures. Crit Rev Food Sci Nutr 2022;:1-19. [PMID: 35758266 DOI: 10.1080/10408398.2022.2092719] [Reference Citation Analysis]
|
20 |
Gao R, Zhong N, Huang S, Li S, Chen G, Ouyang G. Multienzyme Biocatalytic Cascade Systems in Porous Organic Frameworks for Biosensing. Chemistry A European J 2022;28. [DOI: 10.1002/chem.202200074] [Reference Citation Analysis]
|
21 |
Zhang W, Taheri-ledari R, Ganjali F, Afruzi FH, Hajizadeh Z, Saeidirad M, Qazi FS, Kashtiaray A, Sehat SS, Hamblin MR, Maleki A. Nanoscale bioconjugates: A review of the structural attributes of drug-loaded nanocarrier conjugates for selective cancer therapy. Heliyon 2022;8:e09577. [DOI: 10.1016/j.heliyon.2022.e09577] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
22 |
Çelem EB, Önal S. Sepabeads EC-EP immobilized α-galactosidase: Immobilization, characterization and application in the degradation of raffinose-type oligosaccharides. Process Biochemistry 2022;116:136-47. [DOI: 10.1016/j.procbio.2022.02.020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
23 |
Bachosz K, Piasecki A, Zdarta A, Kaczorek E, Pinelo M, Zdarta J, Jesionowski T. Enzymatic membrane reactor in xylose bioconversion with simultaneous cofactor regeneration. Bioorg Chem 2022;123:105781. [PMID: 35395447 DOI: 10.1016/j.bioorg.2022.105781] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
24 |
Yaashikaa PR, Devi MK, Kumar PS. Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. Chemosphere 2022;299:134390. [PMID: 35339523 DOI: 10.1016/j.chemosphere.2022.134390] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
25 |
Guisan JM, Gloria F, Javier R, Daniel MG. Enzyme Immobilization Strategies for the design of robust and efficient biocatalysts. Current Opinion in Green and Sustainable Chemistry 2022. [DOI: 10.1016/j.cogsc.2022.100593] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
26 |
Vaz S. Biochemical synthesis for carbon derivatives. Renewable Carbon 2022. [DOI: 10.1016/b978-0-323-99735-5.00001-3] [Reference Citation Analysis]
|
27 |
Budhiraja M, Chudasama B, Ali A, Tyagi V. Production of a recyclable nanobiocatalyst to synthesize quinazolinone derivatives. RSC Adv 2022;12:31734-31746. [DOI: 10.1039/d2ra04405f] [Reference Citation Analysis]
|