BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Klinthoopthamrong N, Chaikiawkeaw D, Phoolcharoen W, Rattanapisit K, Kaewpungsup P, Pavasant P, Hoven VP. Bacterial cellulose membrane conjugated with plant-derived osteopontin: Preparation and its potential for bone tissue regeneration. Int J Biol Macromol 2020;149:51-9. [PMID: 31981668 DOI: 10.1016/j.ijbiomac.2020.01.158] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Santana RMDR, Napoleão DC, Rodriguez-Diaz JM, Gomes RKM, Silva MG, Garcia RRP, Vinhas GM, Duarte MMMB. Original nanostructured bacterial cellulose/pyrite composite: Photocatalytic application in advanced oxidation processes. Chemosphere 2023;319:137953. [PMID: 36709843 DOI: 10.1016/j.chemosphere.2023.137953] [Reference Citation Analysis]
2 Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioactive Materials 2023;20:137-63. [DOI: 10.1016/j.bioactmat.2022.05.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
3 Ilyas RA, Hamid N, Ishak KA, Norrrahim MNF, Thiagamani S, Rangappa S, Siengchin S, Bangar S, Nurazzi NM. Advanced applications of biomass nanocellulose-reinforced polymer composites. Synthetic and Natural Nanofillers in Polymer Composites 2023. [DOI: 10.1016/b978-0-443-19053-7.00013-5] [Reference Citation Analysis]
4 Sun B, Sun Y, Han S, Zhang R, Wang X, Meng C, Ji T, Sun C, Ren N, Ge S, Liu H, Yu Y, Wang J. Electroactive Hydroxyapatite/Carbon Nanofiber Scaffolds for Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Int J Mol Sci 2022;24. [PMID: 36613973 DOI: 10.3390/ijms24010530] [Reference Citation Analysis]
5 Revin VV, Liyaskina EV, Parchaykina MV, Kuzmenko TP, Kurgaeva IV, Revin VD, Ullah MW. Bacterial Cellulose-Based Polymer Nanocomposites: A Review. Polymers 2022;14:4670. [DOI: 10.3390/polym14214670] [Reference Citation Analysis]
6 Wang B, Feng C, Liu Y, Mi F, Dong J. Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: A review. Japanese Dental Science Review 2022;58:233-48. [DOI: 10.1016/j.jdsr.2022.07.002] [Reference Citation Analysis]
7 Chen S, Huang X. Nanomaterials in Scaffolds for Periodontal Tissue Engineering: Frontiers and Prospects. Bioengineering 2022;9:431. [DOI: 10.3390/bioengineering9090431] [Reference Citation Analysis]
8 Yang Z, Liu W, Liu H, Li R, Chang L, Kan S, Hao M, Wang D. The applications of polysaccharides in dentistry. Front Bioeng Biotechnol 2022;10:970041. [DOI: 10.3389/fbioe.2022.970041] [Reference Citation Analysis]
9 Açarı İK, Sel E, Özcan İ, Ateş B, Köytepe S, Thakur VK. Chemistry and engineering of brush type polymers: Perspective towards tissue engineering. Adv Colloid Interface Sci 2022;305:102694. [PMID: 35597039 DOI: 10.1016/j.cis.2022.102694] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Shrivastav P, Pramanik S, Vaidya G, Abdelgawad MA, Ghoneim MM, Singh A, Abualsoud BM, Amaral LS, Abourehab MAS. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B 2022. [PMID: 35445674 DOI: 10.1039/d1tb02709c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
11 Choi SM, Rao KM, Zo SM, Shin EJ, Han SS. Bacterial Cellulose and Its Applications. Polymers (Basel) 2022;14:1080. [PMID: 35335411 DOI: 10.3390/polym14061080] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
12 Li H, Liu Y. The hopes and hypes of plant and bacteria-derived cellulose application in stem cell technology. Cellulose. [DOI: 10.1007/s10570-022-04443-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Gupta PS, Wasnik K, Patra S, Pareek D, Singh M, Maity S, Pandey M, Paik P. A Review on Biodegradable Polymeric Materials for Bone Tissue Engineering (BTE) Applications. Encyclopedia of Materials: Plastics and Polymers 2022. [DOI: 10.1016/b978-0-12-820352-1.00149-8] [Reference Citation Analysis]
14 Singh A, Kumari K, Kundu PP. Nanocellulose Biocomposites for Bone Tissue Engineering. Handbook of Nanocelluloses 2022. [DOI: 10.1007/978-3-030-89621-8_39] [Reference Citation Analysis]
15 Fan C, Li Z, Ji Q, Sun H, Liang Y, Yang P. Carboxymethyl chitin or chitosan for osteoinduction effect on the human periodontal ligament stem cells. Dent Mater J . [DOI: 10.4012/dmj.2021-250] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Singh A, Kumari K, Kundu PP. Nanocellulose Biocomposites for Bone Tissue Engineering. Handbook of Nanocelluloses 2022. [DOI: 10.1007/978-3-030-62976-2_39-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Jiji S, Maharajan K, Kadirvelu K. Recent developments of bacterial nanocellulose porous scaffolds in biomedical applications. Nanocellulose Materials 2022. [DOI: 10.1016/b978-0-12-823963-6.00002-8] [Reference Citation Analysis]
18 Kadier A, Ilyas RA, Huzaifah MRM, Harihastuti N, Sapuan SM, Harussani MM, Azlin MNM, Yuliasni R, Ibrahim R, Atikah MSN, Wang J, Chandrasekhar K, Islam MA, Sharma S, Punia S, Rajasekar A, Asyraf MRM, Ishak MR. Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers (Basel) 2021;13:3365. [PMID: 34641185 DOI: 10.3390/polym13193365] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 14.5] [Reference Citation Analysis]
19 Chaikiawkeaw D, Khorattanakulchai N, Nammultriputtar K, Rattanapisit K, Everts V, Kubera A, Phoolchareon W, Pavasant P. Osteopontin induces osteogenic differentiation by human periodontal ligament cells via calcium binding domain-activin receptor-like kinase (ALK-1) interaction. J Periodontol 2021. [PMID: 34453745 DOI: 10.1002/JPER.21-0184] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kumar A, Han SS. Efficacy of Bacterial Nanocellulose in Hard Tissue Regeneration: A Review. Materials (Basel) 2021;14:4777. [PMID: 34500866 DOI: 10.3390/ma14174777] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
21 Gregory DA, Tripathi L, Fricker AT, Asare E, Orlando I, Raghavendran V, Roy I. Bacterial cellulose: A smart biomaterial with diverse applications. Materials Science and Engineering: R: Reports 2021;145:100623. [DOI: 10.1016/j.mser.2021.100623] [Cited by in Crossref: 28] [Cited by in F6Publishing: 35] [Article Influence: 14.0] [Reference Citation Analysis]
22 Khan S, Siddique R, Huanfei D, Shereen MA, Nabi G, Bai Q, Manan S, Xue M, Ullah MW, Bowen H. Perspective Applications and Associated Challenges of Using Nanocellulose in Treating Bone-Related Diseases. Front Bioeng Biotechnol 2021;9:616555. [PMID: 34026739 DOI: 10.3389/fbioe.2021.616555] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
23 Carvalho MS, Cabral JMS, da Silva CL, Vashishth D. Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix. Polymers (Basel) 2021;13:1095. [PMID: 33808184 DOI: 10.3390/polym13071095] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
24 Maia MT, Luz ÉPCG, Andrade FK, Rosa MDF, Borges MDF, Arcanjo MRA, Vieira RS. Advances in Bacterial Cellulose/Strontium Apatite Composites for Bone Applications. Polymer Reviews 2021;61:736-64. [DOI: 10.1080/15583724.2021.1896543] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
25 Emre Oz Y, Keskin-Erdogan Z, Safa N, Esin Hames Tuna E. A review of functionalised bacterial cellulose for targeted biomedical fields. J Biomater Appl 2021;:885328221998033. [PMID: 33673762 DOI: 10.1177/0885328221998033] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Nasrollahzadeh M, Bidgoli NSS, Soleimani F, Shafiei N, Nezafat Z, Baran T. Biomedical applications of biopolymer-based (nano)materials. Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications 2021. [DOI: 10.1016/b978-0-323-89970-3.00005-6] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Geurds L, Lauko J, Rowan AE, Amiralian N. Tailored nanocellulose-grafted polymer brush applications. J Mater Chem A 2021;9:17173-88. [DOI: 10.1039/d1ta03264j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
28 Kuhnt T, Camarero-espinosa S. Additive manufacturing of nanocellulose based scaffolds for tissue engineering: Beyond a reinforcement filler. Carbohydrate Polymers 2021;252:117159. [DOI: 10.1016/j.carbpol.2020.117159] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
29 Badshah M, Ullah H, He F, Wahid F, Farooq U, Andersson M, Khan T. Development and Evaluation of Drug Loaded Regenerated Bacterial Cellulose-Based Matrices as a Potential Dosage Form. Front Bioeng Biotechnol 2020;8:579404. [PMID: 33344430 DOI: 10.3389/fbioe.2020.579404] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
30 Wan Q, Qin W, Shen M, Ma Y, Li B, Liu S, Tay FR, Jiao K, Niu L. Simultaneous Regeneration of Bone and Nerves Through Materials and Architectural Design: Are We There Yet? Adv Funct Mater 2020;30:2003542. [DOI: 10.1002/adfm.202003542] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
31 Buruaga-ramiro C, Valenzuela SV, Valls C, Roncero MB, Pastor FJ, Díaz P, Martinez J. Development of an antimicrobial bioactive paper made from bacterial cellulose. International Journal of Biological Macromolecules 2020;158:587-94. [DOI: 10.1016/j.ijbiomac.2020.04.234] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
32 Torgbo S, Sukyai P. Biodegradation and thermal stability of bacterial cellulose as biomaterial: The relevance in biomedical applications. Polymer Degradation and Stability 2020;179:109232. [DOI: 10.1016/j.polymdegradstab.2020.109232] [Cited by in Crossref: 34] [Cited by in F6Publishing: 22] [Article Influence: 11.3] [Reference Citation Analysis]
33 Kamel R, El-wakil NA, Abdelkhalek AA, Elkasabgy NA. Nanofibrillated cellulose/cyclodextrin based 3D scaffolds loaded with raloxifene hydrochloride for bone regeneration. International Journal of Biological Macromolecules 2020;156:704-16. [DOI: 10.1016/j.ijbiomac.2020.04.019] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
34 Foong LK, Foroughi MM, Mirhosseini AF, Safaei M, Jahani S, Mostafavi M, Ebrahimpoor N, Sharifi M, Varma RS, Khatami M. Applications of nano-materials in diverse dentistry regimes. RSC Adv 2020;10:15430-60. [DOI: 10.1039/d0ra00762e] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]