BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mehnath S, Ayisha Sithika MA, Arjama M, Rajan M, Amarnath Praphakar R, Jeyaraj M. Sericin-chitosan doped maleate gellan gum nanocomposites for effective cell damage in Mycobacterium tuberculosis. Int J Biol Macromol 2019;122:174-84. [PMID: 30393136 DOI: 10.1016/j.ijbiomac.2018.10.167] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 dos Santos Macêdo DC, Cavalcanti IDL, de Fátima Ramos dos Santos Medeiros SM, de Souza JB, de Britto Lira Nogueira MC, Cavalcanti IMF. Nanotechnology and tuberculosis: An old disease with new treatment strategies. Tuberculosis 2022. [DOI: 10.1016/j.tube.2022.102208] [Reference Citation Analysis]
2 Chaudhary KR, Puri V, Singh A, Singh C. A review on recent advances in nanomedicines for the treatment of pulmonary tuberculosis. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2021.103069] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Mehnath S, Chitra K, Jeyaraj M. An all-in-one nanomaterial derived from rGO-MoS 2 for photo/chemotherapy of tuberculosis. New J Chem 2022;46:6433-45. [DOI: 10.1039/d1nj03549e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Mehnath S, Rajan M, Jeyaraj M. Immunomodulating polyorganophosphazene-arginine layered liposome antibiotic delivery vehicle against pulmonary tuberculosis. Journal of Drug Delivery Science and Technology 2021;66:102856. [DOI: 10.1016/j.jddst.2021.102856] [Reference Citation Analysis]
5 Hua L, Qian H, Lei T, Liu W, He X, Zhang Y, Lei P, Hu Y. Anti-tuberculosis drug delivery for tuberculous bone defects. Expert Opin Drug Deliv 2021. [PMID: 34758697 DOI: 10.1080/17425247.2021.2005576] [Reference Citation Analysis]
6 Mehnath S, Karthikeyan K, Rajan M, Jeyaraj M. Fabrication of bone-targeting hyaluronic acid coupled alendronate-bioactive glass for osteosarcoma therapy. Materials Chemistry and Physics 2021;273:125146. [DOI: 10.1016/j.matchemphys.2021.125146] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Arjama M, Mehnath S, Rajan M, Jeyaraj M. Engineered Hyaluronic Acid-Based Smart Nanoconjugates for Enhanced Intracellular Drug Delivery. J Pharm Sci 2021:S0022-3549(21)00546-3. [PMID: 34678274 DOI: 10.1016/j.xphs.2021.10.005] [Reference Citation Analysis]
8 Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021;18:3671-718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhou B, Ma Y, Li L, Shi X, Chen Z, Wu F, Liu Y, Zhang Z, Wang S. Pheophorbide co-encapsulated with Cisplatin in folate-decorated PLGA nanoparticles to treat nasopharyngeal carcinoma: Combination of chemotherapy and photodynamic therapy. Colloids Surf B Biointerfaces 2021;208:112100. [PMID: 34547704 DOI: 10.1016/j.colsurfb.2021.112100] [Reference Citation Analysis]
10 Rabiei M, Kashanian S, Samavati SS, Derakhshankhah H, Jamasb S, McInnes SJP. Characteristics of SARS-CoV2 that may be useful for nanoparticle pulmonary drug delivery. J Drug Target 2021;:1-11. [PMID: 34415800 DOI: 10.1080/1061186X.2021.1971236] [Reference Citation Analysis]
11 Nabi B, Rehman S, Aggarwal S, Baboota S, Ali J. Nano-based anti-tubercular drug delivery: an emerging paradigm for improved therapeutic intervention. Drug Deliv Transl Res 2020;10:1111-21. [PMID: 32418158 DOI: 10.1007/s13346-020-00786-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Shi P, Amarnath Praphakar R, Deepa S, Suganya K, Gupta P, Ullah R, Bari A, Murugan M, Rajan M. A promising drug delivery candidate (CS-g-PMDA-CYS-fused gold nanoparticles) for inhibition of multidrug-resistant uropathogenic Serratia marcescens. Drug Deliv 2020;27:1271-82. [PMID: 32885688 DOI: 10.1080/10717544.2020.1809557] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Arjama M, Mehnath S, Rajan M, Jeyaraj M. Injectable cuttlefish HAP and macromolecular fibroin protein hydrogel for natural bone mimicking matrix for enhancement of osteoinduction progression. Reactive and Functional Polymers 2021;160:104841. [DOI: 10.1016/j.reactfunctpolym.2021.104841] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
14 Xu H, Zou X, Xia P, Huang H, Liu F, Ramesh T. Osteoblast cell viability over ultra-long tricalcium phosphate nanocrystal-based methacrylate chitosan composite for bone regeneration. Biomed Mater 2021. [PMID: 33618343 DOI: 10.1088/1748-605X/abe8ac] [Reference Citation Analysis]
15 Hua L, Lei T, Qian H, Zhang Y, Hu Y, Lei P. 3D-printed porous tantalum: recent application in various drug delivery systems to repair hard tissue defects. Expert Opin Drug Deliv 2021;18:625-34. [PMID: 33270470 DOI: 10.1080/17425247.2021.1860015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Hao X, Gai W, Wang L, Zhao J, Sun D, Yang F, Jiang H, Feng Y. 5-Boronopicolinic acid-functionalized polymeric nanoparticles for targeting drug delivery and enhanced tumor therapy. Mater Sci Eng C Mater Biol Appl 2021;119:111553. [PMID: 33321617 DOI: 10.1016/j.msec.2020.111553] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Sharma R, Pahwa R, Ahuja M. Iodine‐loaded poly(silicic acid) gellan nanocomposite mucoadhesive film for antibacterial application. J Appl Polym Sci 2021;138:49679. [DOI: 10.1002/app.49679] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Palumbo FS, Federico S, Pitarresi G, Fiorica C, Giammona G. Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydrate Polymers 2020;229:115430. [DOI: 10.1016/j.carbpol.2019.115430] [Cited by in Crossref: 35] [Cited by in F6Publishing: 19] [Article Influence: 17.5] [Reference Citation Analysis]
19 Muthukumar T, Song JE, Khang G. Biological Role of Gellan Gum in Improving Scaffold Drug Delivery, Cell Adhesion Properties for Tissue Engineering Applications. Molecules 2019;24:E4514. [PMID: 31835526 DOI: 10.3390/molecules24244514] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 6.3] [Reference Citation Analysis]
20 Amarnath Praphakar R, Sumathra M, Sam Ebenezer R, Vignesh S, Shakila H, Rajan M. Fabrication of bioactive rifampicin loaded κ-Car-MA-INH/Nano hydroxyapatite composite for tuberculosis osteomyelitis infected tissue regeneration. Int J Pharm 2019;565:543-56. [PMID: 31102805 DOI: 10.1016/j.ijpharm.2019.05.035] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
21 de Oliveira AC, Vilsinski BH, Bonafé EG, Monteiro JP, Kipper MJ, Martins AF. Chitosan content modulates durability and structural homogeneity of chitosan-gellan gum assemblies. International Journal of Biological Macromolecules 2019;128:114-23. [DOI: 10.1016/j.ijbiomac.2019.01.110] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 8.7] [Reference Citation Analysis]