BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Poomipuk N, Reungsang A, Plangklang P. Poly-β-hydroxyalkanoates production from cassava starch hydrolysate by Cupriavidus sp. KKU38. International Journal of Biological Macromolecules 2014;65:51-64. [DOI: 10.1016/j.ijbiomac.2014.01.002] [Cited by in Crossref: 46] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Kourmentza C, Economou C, Tsafrakidou P, Kornaros M. Spent coffee grounds make much more than waste: Exploring recent advances and future exploitation strategies for the valorization of an emerging food waste stream. Journal of Cleaner Production 2018;172:980-92. [DOI: 10.1016/j.jclepro.2017.10.088] [Cited by in Crossref: 46] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
2 Ferri J, Garcia-garcia D, Sánchez-nacher L, Fenollar O, Balart R. The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers 2016;147:60-8. [DOI: 10.1016/j.carbpol.2016.03.082] [Cited by in Crossref: 77] [Cited by in F6Publishing: 37] [Article Influence: 12.8] [Reference Citation Analysis]
3 Hondo S, Takahashi M, Osanai T, Matsuda M, Hasunuma T, Tazuke A, Nakahira Y, Chohnan S, Hasegawa M, Asayama M. Genetic engineering and metabolite profiling for overproduction of polyhydroxybutyrate in cyanobacteria. J Biosci Bioeng 2015;120:510-7. [PMID: 26055446 DOI: 10.1016/j.jbiosc.2015.03.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
4 Saratale GD, Saratale RG, Varjani S, Cho S, Ghodake GS, Kadam A, Mulla SI, Bharagava RN, Kim D, Shin HS. Development of ultrasound aided chemical pretreatment methods to enrich saccharification of wheat waste biomass for polyhydroxybutyrate production and its characterization. Industrial Crops and Products 2020;150:112425. [DOI: 10.1016/j.indcrop.2020.112425] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 10.5] [Reference Citation Analysis]
5 Khomlaem C, Aloui H, Deshmukh AR, Yun J, Kim H, Napathorn SC, Kim BS. Defatted Chlorella biomass as a renewable carbon source for polyhydroxyalkanoates and carotenoids co-production. Algal Research 2020;51:102068. [DOI: 10.1016/j.algal.2020.102068] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
6 Mohammed S, Behera HT, Dekebo A, Ray L. Optimization of the culture conditions for production of Polyhydroxyalkanoate and its characterization from a new Bacillus cereus sp. BNPI-92 strain, isolated from plastic waste dumping yard. International Journal of Biological Macromolecules 2020;156:1064-80. [DOI: 10.1016/j.ijbiomac.2019.11.138] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Nielsen C, Rahman A, Rehman AU, Walsh MK, Miller CD. Food waste conversion to microbial polyhydroxyalkanoates. Microb Biotechnol 2017;10:1338-52. [PMID: 28736901 DOI: 10.1111/1751-7915.12776] [Cited by in Crossref: 75] [Cited by in F6Publishing: 48] [Article Influence: 15.0] [Reference Citation Analysis]
8 Sitthikitpanya N, Sittijunda S, Khamtib S, Reungsang A. Co-generation of biohydrogen and biochemicals from co-digestion of Chlorella sp. biomass hydrolysate with sugarcane leaf hydrolysate in an integrated circular biorefinery concept. Biotechnol Biofuels 2021;14:197. [PMID: 34598721 DOI: 10.1186/s13068-021-02041-6] [Reference Citation Analysis]
9 Mohammed S, Panda AN, Ray L. An investigation for recovery of polyhydroxyalkanoates (PHA) from Bacillus sp. BPPI-14 and Bacillus sp. BPPI-19 isolated from plastic waste landfill. International Journal of Biological Macromolecules 2019;134:1085-96. [DOI: 10.1016/j.ijbiomac.2019.05.155] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
10 Sangkharak K, Paichid N, Yunu T, Klomklao S, Prasertsan P. Utilisation of tuna condensate waste from the canning industry as a novel substrate for polyhydroxyalkanoate production. Biomass Conv Bioref 2021;11:2053-64. [DOI: 10.1007/s13399-019-00581-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Sirohi R, Prakash Pandey J, Kumar Gaur V, Gnansounou E, Sindhu R. Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresource Technology 2020;311:123536. [DOI: 10.1016/j.biortech.2020.123536] [Cited by in Crossref: 49] [Cited by in F6Publishing: 34] [Article Influence: 24.5] [Reference Citation Analysis]
12 Ramos FD, Delpino CA, Villar MA, Diaz MS. Design and optimization of poly(hydroxyalkanoate)s production plants using alternative substrates. Bioresource Technology 2019;289:121699. [DOI: 10.1016/j.biortech.2019.121699] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
13 Salgaonkar BB, Mani K, Bragança JM. Sustainable Bioconversion of Cassava Waste to Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Halogeometricum borinquense Strain E3. J Polym Environ 2019;27:299-308. [DOI: 10.1007/s10924-018-1346-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
14 Gang S, Lee W, Kwon K, Kim T, Kim J, Chung C. Production of Polyhydroxybutyrate from Ralstonia eutropha H-16 Using Makgeolli Lees Enzymatic Hydrolysate. J Polym Environ 2019;27:2182-8. [DOI: 10.1007/s10924-019-01508-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
15 Tsegaye B, Jaiswal S, Jaiswal AK. Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods 2021;10:1174. [PMID: 34073698 DOI: 10.3390/foods10061174] [Reference Citation Analysis]
16 Azizi N, Najafpour G, Younesi H. Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator. International Journal of Biological Macromolecules 2017;101:1029-40. [DOI: 10.1016/j.ijbiomac.2017.03.184] [Cited by in Crossref: 45] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
17 Saratale GD, Oh M. Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock. International Journal of Biological Macromolecules 2015;80:627-35. [DOI: 10.1016/j.ijbiomac.2015.07.034] [Cited by in Crossref: 64] [Cited by in F6Publishing: 48] [Article Influence: 9.1] [Reference Citation Analysis]
18 Porras MA, Ramos FD, Diaz MS, Cubitto MA, Villar MA. Modeling the bioconversion of starch to P(HB-co-HV) optimized by experimental design using Bacillus megaterium BBST4 strain. Environ Technol 2019;40:1185-202. [PMID: 29243993 DOI: 10.1080/09593330.2017.1418436] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
19 Hokamura A, Yunoue Y, Goto S, Matsusaki H. Biosynthesis of Polyhydroxyalkanoate from Steamed Soybean Wastewater by a Recombinant Strain of Pseudomonas sp. 61-3. Bioengineering (Basel) 2017;4:E68. [PMID: 28952548 DOI: 10.3390/bioengineering4030068] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
20 Yadav B, Pandey A, Kumar LR, Tyagi R. Bioconversion of waste (water)/residues to bioplastics- A circular bioeconomy approach. Bioresource Technology 2020;298:122584. [DOI: 10.1016/j.biortech.2019.122584] [Cited by in Crossref: 37] [Cited by in F6Publishing: 20] [Article Influence: 18.5] [Reference Citation Analysis]
21 Debuissy T, Pollet E, Avérous L. Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology. ChemSusChem 2018;11:3836-70. [DOI: 10.1002/cssc.201801700] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
22 Mourão MM, Xavier LP, Urbatzka R, Figueiroa LB, Costa CEFD, Dias CGBT, Schneider MPC, Vasconcelos V, Santos AV. Characterization and Biotechnological Potential of Intracellular Polyhydroxybutyrate by Stigeoclonium sp. B23 Using Cassava Peel as Carbon Source. Polymers (Basel) 2021;13:687. [PMID: 33668862 DOI: 10.3390/polym13050687] [Reference Citation Analysis]
23 Yadav AN, Kour D, Rana KL, Yadav N, Singh B, Chauhan VS, Rastegari AA, Hesham AE, Gupta VK. Metabolic Engineering to Synthetic Biology of Secondary Metabolites Production. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; 2019. pp. 279-320. [DOI: 10.1016/b978-0-444-63504-4.00020-7] [Cited by in Crossref: 27] [Article Influence: 9.0] [Reference Citation Analysis]
24 Khattab MM, Dahman Y. Production and recovery of poly-3-hydroxybutyrate bioplastics using agro-industrial residues of hemp hurd biomass. Bioprocess Biosyst Eng 2019;42:1115-27. [PMID: 30993443 DOI: 10.1007/s00449-019-02109-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
25 Brojanigo S, Gronchi N, Cazzorla T, Wong TS, Basaglia M, Favaro L, Casella S. Engineering Cupriavidus necator DSM 545 for the one-step conversion of starchy waste into polyhydroxyalkanoates. Bioresour Technol 2021;:126383. [PMID: 34808314 DOI: 10.1016/j.biortech.2021.126383] [Reference Citation Analysis]
26 Liu C, Qi L, Yang S, He Y, Jia X. Increased sedimentation of a Pseudomonas–Saccharomyces microbial consortium producing medium chain length polyhydroxyalkanoates. Chinese Journal of Chemical Engineering 2019;27:1659-65. [DOI: 10.1016/j.cjche.2018.11.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Fei Z, Wei R, Zhou D, Li N, Xiao P. A novel bioluminescent approach to the loop-mediated isothermal amplification-based detection of Lactobacillus salivarius in feed samples. J Microbiol Methods 2021;187:106209. [PMID: 33771523 DOI: 10.1016/j.mimet.2021.106209] [Reference Citation Analysis]
28 Yadav B, Chavan S, Atmakuri A, Tyagi R, Drogui P. A review on recovery of proteins from industrial wastewaters with special emphasis on PHA production process: Sustainable circular bioeconomy process development. Bioresource Technology 2020;317:124006. [DOI: 10.1016/j.biortech.2020.124006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
29 Bomrungnok W, Arai T, Yoshihashi T, Sudesh K, Hatta T, Kosugi A. Direct production of polyhydroxybutyrate from waste starch by newly-isolated Bacillus aryabhattai T34-N4. Environmental Technology 2020;41:3318-28. [DOI: 10.1080/09593330.2019.1608314] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
30 Muhammad M, Aloui H, Khomlaem C, Hou CT, Kim BS. Production of polyhydroxyalkanoates and carotenoids through cultivation of different bacterial strains using brown algae hydrolysate as a carbon source. Biocatalysis and Agricultural Biotechnology 2020;30:101852. [DOI: 10.1016/j.bcab.2020.101852] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Sakthiselvan P, Madhumathi R. Kinetic evaluation on cell growth and biosynthesis of polyhydroxybutyrate (PHB) by Bacillus safensis EBT1 from sugarcane bagasse. Engineering in Agriculture, Environment and Food 2018;11:145-52. [DOI: 10.1016/j.eaef.2018.03.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
32 Pagliano G, Ventorino V, Panico A, Pepe O. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol Biofuels 2017;10:113. [PMID: 28469708 DOI: 10.1186/s13068-017-0802-4] [Cited by in Crossref: 66] [Cited by in F6Publishing: 45] [Article Influence: 13.2] [Reference Citation Analysis]
33 Talan A, Tiwari B, Yadav B, Tyagi RD, Wong JWC, Drogui P. Food waste valorization: Energy production using novel integrated systems. Bioresour Technol 2021;322:124538. [PMID: 33352392 DOI: 10.1016/j.biortech.2020.124538] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
34 Dike KS, Okafor CP, Ohabughiro BN, Maduwuba MC, Ezeokoli OT, Ayeni KI, Okafor CM, Ezekiel CN. Analysis of bacterial communities of three cassava-based traditionally fermented Nigerian foods (abacha, fufu and garri). Lett Appl Microbiol 2021. [PMID: 34850410 DOI: 10.1111/lam.13621] [Reference Citation Analysis]
35 Chien Bong CP, Alam MNHZ, Samsudin SA, Jamaluddin J, Adrus N, Mohd Yusof AH, Muis ZA, Hashim H, Salleh MM, Abdullah AR, Chuprat BRB. A review on the potential of polyhydroxyalkanoates production from oil-based substrates. J Environ Manage 2021;298:113461. [PMID: 34435568 DOI: 10.1016/j.jenvman.2021.113461] [Reference Citation Analysis]
36 Sen KY, Baidurah S. Renewable biomass feedstocks for production of sustainable biodegradable polymer. Current Opinion in Green and Sustainable Chemistry 2021;27:100412. [DOI: 10.1016/j.cogsc.2020.100412] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]