BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Santos SS, de Araújo RV, Giarolla J, Seoud OE, Ferreira EI. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. Int J Antimicrob Agents 2020;55:105906. [PMID: 31987883 DOI: 10.1016/j.ijantimicag.2020.105906] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Lopes SP, Yepes LM, Pérez-Castillo Y, Robledo SM, de Sousa DP. Alkyl and Aryl Derivatives Based on p-Coumaric Acid Modification and Inhibitory Action against Leishmania braziliensis and Plasmodium falciparum. Molecules 2020;25:E3178. [PMID: 32664596 DOI: 10.3390/molecules25143178] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
2 Scalese G, Machado I, Salinas G, Pérez-Díaz L, Gambino D. Heteroleptic Oxidovanadium(V) Complexes with Activity against Infective and Non-Infective Stages of Trypanosoma cruzi. Molecules 2021;26:5375. [PMID: 34500808 DOI: 10.3390/molecules26175375] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Silva CFM, Pinto DCGA, Fernandes PA, Silva AMS. Evolution of Acridines and Xanthenes as a Core Structure for the Development of Antileishmanial Agents. Pharmaceuticals 2022;15:148. [DOI: 10.3390/ph15020148] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Zafar R, Shahid K, Wilson LD, Fahid M, Sartaj M, Waseem W, Saeed Jan M, Zubair M, Irfan A, Ullah S, Sadiq A. Organotin (IV) complexes with sulphonyl hydrazide moiety. Design, synthesis, characterization, docking studies, cytotoxic and anti-leishmanial activity. J Biomol Struct Dyn 2021;:1-11. [PMID: 34459711 DOI: 10.1080/07391102.2021.1970625] [Reference Citation Analysis]
5 Raimundo VD, Carvalho RPR, Machado-neves M, da Silva EDAM. Effects of terpenes in the treatment of visceral leishmaniasis: a systematic review of preclinical evidence. Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106117] [Reference Citation Analysis]
6 Coro-bermello J, López-rodríguez ER, Alfonso-ramos JE, Alonso D, Ojeda-carralero GM, Prado GA, Moreno-castillo E. Identification of novel thiadiazin derivatives as potentially selective inhibitors towards trypanothione reductase from Trypanosoma cruzi by molecular docking using the numerical index poses ratio Pr and the binding mode analysis. SN Appl Sci 2021;3. [DOI: 10.1007/s42452-021-04375-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Rosas-Jimenez JG, Garcia-Revilla MA, Madariaga-Mazon A, Martinez-Mayorga K. Predictive Global Models of Cruzain Inhibitors with Large Chemical Coverage. ACS Omega 2021;6:6722-35. [PMID: 33748586 DOI: 10.1021/acsomega.0c05645] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Eissa MM, El-Azzouni MZ, El-Khordagui LK, Abdel Bary A, El-Moslemany RM, Abdel Salam SA. Evaluation of prophylactic efficacy and safety of praziquantel-miltefosine nanocombination in experimental Schistosomiasis mansoni. Acta Trop 2020;212:105714. [PMID: 32950482 DOI: 10.1016/j.actatropica.2020.105714] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Santucci M, Luciani R, Gianquinto E, Pozzi C, Pisa FD, Dello Iacono L, Landi G, Tagliazucchi L, Mangani S, Spyrakis F, Costi MP. Repurposing the Trypanosomatidic GSK Kinetobox for the Inhibition of Parasitic Pteridine and Dihydrofolate Reductases. Pharmaceuticals (Basel) 2021;14:1246. [PMID: 34959646 DOI: 10.3390/ph14121246] [Reference Citation Analysis]
10 Domínguez-Díaz LR, Eugenia Ochoa M, Soto-Castro D, Farfán N, Morales-Chamorro M, Yépez-Mulia L, Pérez-Campos E, Santillan R, Moreno-Rodríguez A. In vitro, ex vivo and in vivo short-term screening of DHEA nitrate derivatives activity over Trypanosoma cruzi Ninoa and TH strains from Oaxaca State, México. Bioorg Med Chem 2021;48:116417. [PMID: 34571489 DOI: 10.1016/j.bmc.2021.116417] [Reference Citation Analysis]
11 Tempone AG, Pieper P, Borborema SET, Thevenard F, Lago JHG, Croft SL, Anderson EA. Marine alkaloids as bioactive agents against protozoal neglected tropical diseases and malaria. Nat Prod Rep 2021;38:2214-35. [PMID: 34913053 DOI: 10.1039/d0np00078g] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Rosa FA, Mendes de Souza Melo S, Pianoski KE, Poletto J, Dos Santos MG, Vieira da Silva MJ, Lazarin-Bidóia D, Volpato H, Moura S, Nakamura CV. Synthesis and Antiprotozoal Profile of 3,4,5-Trisubstituted Isoxazoles. ChemistryOpen 2021;10:931-8. [PMID: 34331350 DOI: 10.1002/open.202100141] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Cabral FV, Souza THDS, Sellera FP, Fontes A, Ribeiro MS. Towards effective cutaneous leishmaniasis treatment with light-based technologies. A systematic review and meta-analysis of preclinical studies. J Photochem Photobiol B 2021;221:112236. [PMID: 34090038 DOI: 10.1016/j.jphotobiol.2021.112236] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Sear CE, Pieper P, Amaral M, Romanelli MM, Costa-Silva TA, Haugland MM, Tate JA, Lago JHG, Tempone AG, Anderson EA. Synthesis and Structure-Activity Relationship of Dehydrodieugenol B Neolignans against Trypanosoma cruzi. ACS Infect Dis 2020;6:2872-8. [PMID: 33047947 DOI: 10.1021/acsinfecdis.0c00523] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Rey-Cibati A, Valladares-Delgado M, Benaim G. Determination of Intracellular Ca2+ Concentration in the Human Pathogens Trypanosomatids Leishmania mexicana and Trypanosoma cruzi by the Use of the Fluorescent Ca2+ Indicator Fura-2. Bio Protoc 2020;10:e3766. [PMID: 33659424 DOI: 10.21769/BioProtoc.3766] [Reference Citation Analysis]
16 Valsecchi WM, Delfino JM, Santos J, Fernández Villamil SH. Zoledronate repositioning as a potential trypanocidal drug. Trypanosoma cruzi HPRT an alternative target to be considered. Biochem Pharmacol 2021;188:114524. [PMID: 33741333 DOI: 10.1016/j.bcp.2021.114524] [Reference Citation Analysis]
17 Gambino D, Otero L. Facing Diseases Caused by Trypanosomatid Parasites: Rational Design of Pd and Pt Complexes With Bioactive Ligands. Front Chem 2021;9:816266. [PMID: 35071192 DOI: 10.3389/fchem.2021.816266] [Reference Citation Analysis]
18 Herrera-Acevedo C, Perdomo-Madrigal C, Muratov EN, Scotti L, Scotti MT. Discovery of Alternative Chemotherapy Options for Leishmaniasis through Computational Studies of Asteraceae. ChemMedChem 2021;16:1234-45. [PMID: 33336460 DOI: 10.1002/cmdc.202000862] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Scalese G, Kostenkova K, Crans DC, Gambino D. Metallomics and other omics approaches in antiparasitic metal-based drug research. Current Opinion in Chemical Biology 2022;67:102127. [DOI: 10.1016/j.cbpa.2022.102127] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kourbeli V, Chontzopoulou E, Moschovou K, Pavlos D, Mavromoustakos T, Papanastasiou IP. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021;26:4629. [PMID: 34361781 DOI: 10.3390/molecules26154629] [Reference Citation Analysis]
21 Wamai RG, Kahn J, Mcgloin J, Ziaggi G. Visceral leishmaniasis: a global overview. J Glob Health Sci 2020;2:e3. [DOI: 10.35500/jghs.2020.2.e3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Rubio-Hernández M, Alcolea V, Pérez-Silanes S. Potential of sulfur-selenium isosteric replacement as a strategy for the development of new anti-chagasic drugs. Acta Trop 2022;233:106547. [PMID: 35667455 DOI: 10.1016/j.actatropica.2022.106547] [Reference Citation Analysis]
23 Alonso L, Pianoski KE, Alonso A, Rosa FA. Antileishmanial activity of 3,4,5-trisubstituted isoxazoles by interaction with Leishmania amazonensis plasma membrane. Journal of Molecular Structure 2022;1249:131604. [DOI: 10.1016/j.molstruc.2021.131604] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 N Cavallone I, Santos SK, Oliveira KS, D Passero LF, D Laurenti M, Jesus JA, P Marinsek G, Chucri TM, Mari RB. Histological and neuronal changes in the duodenum of hamsters infected with Leishmania (Leishmania) infantum. Exp Parasitol 2022;:108315. [PMID: 35780863 DOI: 10.1016/j.exppara.2022.108315] [Reference Citation Analysis]
25 Chudin AA, Kudryashova EV. Improved Enzymatic Assay and Inhibition Analysis of Redox Membranotropic Enzymes, AtGALDH and TcGAL, Using a Reversed Micellar System. Analytica 2022;3:36-53. [DOI: 10.3390/analytica3010004] [Reference Citation Analysis]
26 Fonseca BP, Albuquerque PC, Zicker F. Neglected tropical diseases in Brazil: lack of correlation between disease burden, research funding and output. Trop Med Int Health 2020;25:1373-84. [PMID: 32860446 DOI: 10.1111/tmi.13478] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 da Cunha AFS, Di C Oliveira YL, Dolabella SS, Scher R, Souto EB, Lopez JA, Jain S. Anti-leishmanial compounds from microbial metabolites: a promising source. Appl Microbiol Biotechnol 2021;105:8227-40. [PMID: 34625819 DOI: 10.1007/s00253-021-11610-6] [Reference Citation Analysis]
28 Pardo-Rodriguez D, Lasso P, Mateus J, Mendez J, Puerta CJ, Cuéllar A, Robles J, Cuervo C. A terpenoid-rich extract from Clethra fimbriata exhibits anti-Trypanosoma cru zi activity and induces T cell cytokine production. Heliyon 2022;8:e09182. [PMID: 35368545 DOI: 10.1016/j.heliyon.2022.e09182] [Reference Citation Analysis]
29 Pacheco PAF, Santos MMM. Recent Progress in the Development of Indole-Based Compounds Active against Malaria, Trypanosomiasis and Leishmaniasis. Molecules 2022;27:319. [PMID: 35011552 DOI: 10.3390/molecules27010319] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Martinez-Peinado N, Ortiz JE, Cortes-Serra N, Pinazo MJ, Gascon J, Tapia A, Roitman G, Bastida J, Feresin GE, Alonso-Padilla J. Anti-Trypanosoma cruzi activity of alkaloids isolated from Habranthus brachyandrus (Amaryllidaceae) from Argentina. Phytomedicine 2022;101:154126. [PMID: 35489322 DOI: 10.1016/j.phymed.2022.154126] [Reference Citation Analysis]
31 Espinosa R, Robledo S, Guzmán C, Arbeláez N, Yepes L, Santafé G, Sáez A. Synthesis and evaluation of the in vitro and in vivo antitrypanosomal activity of 2-styrylquinolines. Heliyon 2021;7:e07024. [PMID: 34036197 DOI: 10.1016/j.heliyon.2021.e07024] [Reference Citation Analysis]